Dell Latitude E6410 Notebook| Quantity Available: 40+
This post is intended for businesses and other organizations interested... Read more →
Posted by Richy George on 24 June, 2024
This post was originally published on this siteWhen I reviewed Amazon CodeWhisperer, Google Bard, and GitHub Copilot in June of 2023, CodeWhisperer could generate code in an IDE and did security reviews, but it lacked a chat window and code explanations. The current version of CodeWhisperer is now called Amazon Q Developer, and it does have a chat window that can explain code, and several other features that may be relevant to you, especially if you do a lot of development using AWS.
Amazon Q Developer currently runs in Visual Studio Code, Visual Studio, JetBrains IDEs, the Amazon Console, and the macOS command line. Q Developer also offers asynchronous agents, programming language translations, and Java code transformations/upgrades. In addition to generating, completing, and discussing code, Q Developer can write unit tests, optimize code, scan for vulnerabilities, and suggest remediations. It supports conversations in English, and code in the Python, Java, JavaScript, TypeScript, C#, Go, Rust, PHP, Ruby, Kotlin, C, C++, shell scripting, SQL, and Scala programming languages.
You can chat with Amazon Q Developer about AWS capabilities, and ask it to review your resources, analyze your bill, or architect solutions. It knows about AWS well-architected patterns, documentation, and solution implementation.
According to Amazon, Amazon Q Developer is “powered by Amazon Bedrock” and trained on “high-quality AWS content.” Since Bedrock supports many foundation models, it’s not clear from the web statement which one was used for Amazon Q Developer. I asked, and got this answer from an AWS spokesperson: “Amazon Q uses multiple models to execute its tasks and uses logic to route tasks to the model that is the best fit for the job.”
Amazon Q Developer has a reference tracker that detects whether a code suggestion might be similar to publicly available code. The reference tracker can label these with a repository URL and project license information, or optionally filter them out.
Amazon Q Developer directly competes with GitHub Copilot, JetBrains AI, and Tabnine, and indirectly competes with a number of large language models (LLMs) and small language models (SLMs) that know about code, such as Code Llama, StarCoder, Bard, OpenAI Codex, and Mistral Codestral. GitHub Copilot can converse in dozens of natural languages, as opposed to Amazon Q Developer’s one, and supports a number of extensions from programming, cloud, and database vendors, as opposed to Amazon Q Developer’s AWS-only ties.
Given the multiple environments in which Amazon Q Developer can run, it’s not a surprise that there are multiple installers. The only tricky bit is signing and authentication.
You can install Amazon Q Developer from the Visual Studio Code Marketplace, or from the Extensions sidebar in Visual Studio Code. You can get to that sidebar from the Extensions icon at the far left, by pressing Shift-Command-X, or by choosing Extensions: Install Extensions from the command palette. Type “Amazon Q” to find it. Once you’ve installed the extension, you’ll need to authenticate to AWS as discussed below.
Like Visual Studio Code, JetBrains has a marketplace for IDE plugins, where Amazon Q Developer is available. You’ll need to reboot the IDE after downloading and installing the plugin. Then you’ll need to authenticate to AWS as discussed below. Note that the Amazon Q Developer plugin disables local inline JetBrains full-line code completion.
For Visual Studio, Amazon Q Developer is part of the AWS Toolkit, which you can find it in the Visual Studio Marketplace. Again, once you’ve installed the toolkit you’ll need to authenticate to AWS as discussed below.
The authentication process is confusing because there are several options and several steps that bounce between your IDE and web browser. You used to have to repeat this process frequently, but the product manager assures me that re-authentication should now only be necessary every three months.
Amazon Q Developer for the command line is currently for macOS only, although a Linux version is on the roadmap and documented as a remote target. The macOS installation is basically a download of a DMG file, followed by running the disk image, dragging the Q file to the applications directory, and running that Q app to install the CLI q
program and a menu bar icon that can bring up settings and the web user guide. You’ll also need to authenticate to AWS, which will log you in.
If you are running as an IAM user rather than a root user, you’ll have to add IAM permissions to use Amazon Q Developer. Once you have permission, AWS should display an icon at the right of the screen that brings up the Amazon Q Developer interface.
According to AWS, “Amazon Q Developer Agent achieved the highest scores of 13.4% on the SWE-Bench Leaderboard and 20.5% on the SWE-Bench Leaderboard (Lite), a data set that benchmarks coding capabilities. Amazon Q security scanning capabilities outperform all publicly benchmarkable tools on detection across the most popular programming languages.”
Both of the quoted numbers are reflected on the SWE-Bench site, but there are two issues. Neither number has as yet been verified by SWE-Bench, and the Amazon Q Developer ranking on the Lite Leaderboard has dropped to #3. In addition, if there’s a supporting document on the web for Amazon’s security scanning claim, it has evaded my searches.
SWE-Bench, from Cornell, is “an evaluation framework consisting of 2,294 software engineering problems drawn from real GitHub issues and corresponding pull requests across 12 popular Python repositories.” The scores reflect the solution rates. The Lite data set is a subset of 300 GitHub issues.
Let’s explore how Amazon Q Developer behaves on the various tasks it supports in some of the 15 programming languages it supports. This is not a formal benchmark, but rather an attempt to get a feel for how well it works. Bear in mind that Amazon Q Developer is context sensitive and tries to use the persona that it thinks best fits the environment where you ask it for help.
I tried a softball question for predictive code generation and used one of Amazon’s inline suggestion examples. The Python prompt supplied was # Function to upload a file to an S3 bucket
. Pressing Option-C as instructed got me the code below the prompt in the screenshot below, after an illegal character that I had to delete. I had to type import
at the top to prompt Amazon Q to generate the imports for logging
, boto3
, and ClientError
.
I also used Q Chat to tell me how to resolve the imports; it suggested a pip
command, but on my system that fixed the wrong Python environment (v 3.11). I had to do a little sleuthing in the Frameworks directory tree to remind myself to use pip3
to target my current Python v 3.12 environment. I felt like singing “Daisy, Daisy” to Dave and complaining that my mind was going.
I also tried Amazon’s two other built-in inline suggestion examples. The example to complete an array of fake users in Python mostly worked; I had to add the closing ]
myself. The example to generate unit tests failed when I pressed Option-C: It generated illegal characters instead of function calls. (I’m starting to suspect an issue with Option-C in VS Code on macOS. It may or may not have anything to do with Amazon Q Developer.)
When I restarted VS Code, tried again, and this time pressed Return on the line below the comment, it worked fine, generating the test_sum
function below.
# Write a test case for the above function. def test_sum(): """ Unit test for the sum function. """ assert sum(1, 2) == 3 assert sum(-1, 2) == 1 assert sum(0, 0) == 0
AWS shows examples of completion with Amazon Q Developer in up to half a dozen programming languages in its documentation. The examples, like the Python ones we’ve discussed, are either very simple, e.g. add two numbers, or relate to common AWS operations supported by APIs, such as uploading files to an S3 bucket.
Since I now believed that Amazon Q Developer can generate Python, especially for its own test examples, I tried something a little different. As shown in the screenshot below, I created a file called quicksort.cpp, then typed an initial comment:
//function to sort a vector of generics in memory using the quicksort algorithm
Amazon Q Developer kept trying to autocomplete this comment, and in some cases the implementation as well, for different problems. Nevertheless it was easy to keep typing my specification while Amazon Q Developer erased what it had generated, and Amazon Q Developer eventually generated a nearly correct implementation.
Quicksort is a well-known algorithm. Both the C and C++ libraries have implementations of it, but they don’t use generics. Instead, you need to write type-specific comparison functions to pass to qsort
. That’s historic, as the libraries were implemented before generics were added to the languages.
Page 2
I eventually got Amazon Q Developer to generate the main
routine to test the implementation. It initially generated documentation for the function instead, but when I rejected that and tried again it generated the main
function with a test case.
Unsurprisingly, the generated code didn’t even compile the first time. I saw that Amazon Q Developer had left out the required #include <iostream>
, but I let VS Code correct that error without sending any code to Amazon Q Developer or entering the #include
myself.
It still didn’t compile. The errors were in the recursive calls to sortVector()
, which were written in a style that tried to be too clever. I highlighted and sent one of the error messages to Amazon Q Developer for a fix, and it solved a different problem. I tried again, giving Amazon Q Developer more context and asking for a fix; this time it recognized the actual problem and generated correct code.
This experience was a lot like pair programming with an intern or a junior developer who hadn’t learned much C++. An experienced C/C++ programmer might have asked to recast the problem to use the qsort
library function, on grounds of using the language library. I would have justified my specification to use generics on stylistic grounds as well as possible runtime efficiency grounds.
Another consideration here is that there’s a well-known worst case for qsort
, which takes a maximum time to run when the vector to be sorted is already in order. For this implementation, there’s a simple fix to be made by randomizing the partition point (see Knuth, The Art of Computer Programming: Sorting and Searching, Volume 3). If you use the library function you just have to live with the inefficiency.
So far, none of my experiments with Amazon Q Developer have generated code references, which are associated with recommendations that are similar to training data. I do see a code reference log in Visual Studio Code, but it currently just says “Don’t want suggestions that include code with references? Uncheck this option in Amazon Q: Settings.”
By default, Q Developer scans your open code files for vulnerabilities in the background, and generates squiggly underlines when it finds them. From there you can bring up explanations of the vulns and often invoke automatic fixes for them. You can also ask Q to scan your whole project for vulnerabilities and generate a report. Scans look for security issues such as as resource leaks, SQL injection, and cross-site scripting; secrets such as hardcoded passwords, database connection strings, and usernames; misconfiguration, compliance, and security issues in infrastructure as code files; and deviations from quality and efficiency best practices.
You’ve already seen how you can use Q Chat in an IDE to explain and fix code. It can also optimize code and write unit tests. You can go back to the first screenshot in this review to see Q Chat’s summary of what it can and can’t do, or use the /help
command yourself once you have Q Chat set up in your IDE. On the whole, having Q Chat in Amazon Q Developer improves the product considerably over last year’s CodeWhisperer.
If you set up Amazon Q Developer at the Pro level, you can customize its code generation of Python, Java, JavaScript, and TypeScript by giving it access to your code base. The code base can be in an S3 bucket or in a repository on GitHub, GitLab, or Bitbucket.
Running a customization generates a fine-tuned model that your users can choose to use for their code suggestions. They’ll still be able to use the default base model, but companies have reported that using customized code generation increases developer productivity even more than using the base model.
Developer agents are long-running Amazon Q Developer processes. The one agent I’ve seen so far is for code transformation, specifically transforming Java 8 or Java 11 Maven projects to Java 17. There are a bunch of specific requirements your Java project needs to meet for a successful transformation, but the transformation agent worked well in AWS’s internal tests. While I have seen it demonstrated, I haven’t run it myself.
Amazon Q Developer for the CLI currently (v 1.2.0) works in macOS; supports the bash
, zsh
, and fish
shells; runs in the iTerm2, macOS Terminal, Hyper, Alacritty, Kitty, and wezTerm terminal emulators; runs in the VS Code terminal and JetBrains terminals (except Fleet); and supports some 500 of the most popular CLIs such as git
, aws
, docker
, npm
, and yarn
. You can extend the CLI to remote macOS systems with q integrations install ssh
. You can also extend it to 64-bit versions of recent distributions of Fedora, Ubuntu, and Amazon Linux 2023. (That one’s not simple, but it’s documented.)
Amazon Q Developer CLI performs three major services. It can autocomplete your commands as you type, it can translate natural language specifications to CLI commands (q translate
), and it can chat with you about how to perform tasks from the command line (q chat
).
For example, I often have trouble remembering all the steps it takes to rebase a Git repository, which is something you might want to do if you and a colleague are working on the same code (careful!) on different branches (whew!). I asked q chat
, “How can I rebase a git repo?”
It gave me the response in the first screenshot below. To get brushed up on how the action works, I asked the follow-up question, “What does rebasing really mean?” It gave me the response in the second screenshot below. Finally, to clarify the reasons why I would rebase my feature branch versus merging it with an updated branch, I asked, “Why rebase a repo instead of merging branches?” It gave me the response in the third screenshot below.
The simple answer to the question I meant to ask is item 2, which talks about the common case where the main branch is changing while you work on a feature. The real, overarching answer is at the end: “The decision to rebase or merge often comes down to personal preference and the specific needs of your project and team. It’s a good idea to discuss your team’s Git workflow and agree on when to use each approach.”
As you saw earlier in this review, a small Q icon at the upper right of the AWS Management Console window brings up a right-hand column where Amazon Q Developer invites you to “Ask me anything about AWS.” Similarly a large Q icon at the bottom right of an AWS documentation page brings up that same AMAaA column as a modeless floating window.
Overall, I like Amazon Q Developer. It seems to be able to handle the use cases for which it was trained, and generate whole functions in common programming languages with only a few fixes. It can be useful for completing lines of code, doc strings, and if/for/while/try code blocks as you type. It’s also nice that it scans for vulnerabilities and can help you fix code problems.
On the other hand, Q Developer can’t generate full functions for some use cases; it then reverts to line-by-line suggestions. Also, there seems to be a bug associated with the use of Option-C to trigger code generation. I hope that will be fixed fairly soon, but the workaround is to press Return a lot.
According to Amazon, a 33% acceptance rate is par for the course for AI code generators. By acceptance rate, they mean the percentage of generated code that is used by the programmer. They claim a higher rate than that, even for their base model without customization. They also claim over 50% boosts in programmer productivity, although how they measure programmer productivity isn’t clear to me.
Their claim is that customizing the Amazon Q Developer model to “the way we do things here” from the company’s code base offers an additional boost in acceptance rate and programmer productivity. Note that code bases need to be cleaned up before using them for training. You don’t want the model learning bad, obsolete, or unsafe coding habits.
I can believe a hefty productivity boost for experienced developers from using Amazon Q Developer. However, I can’t in good conscience recommend that programming novices use any AI code generator until they have developed their own internal sense for how code should be written, validated, and tested. One of the ways that LLMs go off the rails is to start generating BS, also called hallucinating. If you can’t spot that, you shouldn’t rely on their output.
How does Amazon Q Developer compare to GitHub Copilot, JetBrains AI, and Tabnine? Stay tuned. I need to reexamine GitHub Copilot, which seems to get updates on a monthly basis, and take a good look at JetBrains AI and Tabnine before I can do that comparison properly. I’d bet good money, however, that they’ll all have changed in some significant way by the time I get through my full round of reviews.
—
Cost: Free with limited monthly access to advanced features; Pro tier $19/month.
Platform: Amazon Web Services. Supports Visual Studio Code, Visual Studio, JetBrains IDEs, the Amazon Console, and the macOS command line. Supports recent 64-bit Fedora, Ubuntu, and Amazon Linux 2023 as remote targets from macOS ssh
.
Next read this:
Posted by Richy George on 17 June, 2024
This post was originally published on this site“Turn your enterprise data into production-ready LLM applications,” blares the LlamaIndex home page in 60 point type. OK, then. The subhead for that is “LlamaIndex is the leading data framework for building LLM applications.” I’m not so sure that it’s the leading data framework, but I’d certainly agree that it’s a leading data framework for building with large language models, along with LangChain and Semantic Kernel, about which more later.
LlamaIndex currently offers two open source frameworks and a cloud. One framework is in Python; the other is in TypeScript. LlamaCloud (currently in private preview) offers storage, retrieval, links to data sources via LlamaHub, and a paid proprietary parsing service for complex documents, LlamaParse, which is also available as a stand-alone service.
LlamaIndex boasts strengths in loading data, storing and indexing your data, querying by orchestrating LLM workflows, and evaluating the performance of your LLM application. LlamaIndex integrates with over 40 vector stores, over 40 LLMs, and over 160 data sources. The LlamaIndex Python repository has over 30K stars.
Typical LlamaIndex applications perform Q&A, structured extraction, chat, or semantic search, and/or serve as agents. They may use retrieval-augmented generation (RAG) to ground LLMs with specific sources, often sources that weren’t included in the models’ original training.
LlamaIndex competes with LangChain, Semantic Kernel, and Haystack. Not all of these have exactly the same scope and capabilities, but as far as popularity goes, LangChain’s Python repository has over 80K stars, almost three times that of LlamaIndex (over 30K stars), while the much newer Semantic Kernel has over 18K stars, a little over half that of LlamaIndex, and Haystack’s repo has over 13K stars.
Repository age is relevant because stars accumulate over time; that’s also why I qualify the numbers with “over.” Stars on GitHub repos are loosely correlated with historical popularity.
LlamaIndex, LangChain, and Haystack all boast a number of major companies as users, some of whom use more than one of these frameworks. Semantic Kernel is from Microsoft, which doesn’t usually bother publicizing its users except for case studies.
At a high level, LlamaIndex is designed to help you build context-augmented LLM applications, which basically means that you combine your own data with a large language model. Examples of context-augmented LLM applications include question-answering chatbots, document understanding and extraction, and autonomous agents.
The tools that LlamaIndex provides perform data loading, data indexing and storage, querying your data with LLMs, and evaluating the performance of your LLM applications:
LLMs have been trained on large bodies of text, but not necessarily text about your domain. There are three major ways to perform context augmentation and add information about your domain, supplying documents, doing RAG, and fine-tuning the model.
The simplest context augmentation method is to supply documents to the model along with your query, and for that you might not need LlamaIndex. Supplying documents works fine unless the total size of the documents is larger than the context window of the model you’re using, which was a common issue until recently. Now there are LLMs with million-token context windows, which allow you to avoid going on to the next steps for many tasks. If you plan to perform many queries against a million-token corpus, you’ll want to cache the documents, but that’s a subject for another time.
Retrieval-augmented generation combines context with LLMs at inference time, typically with a vector database. RAG procedures often use embedding to limit the length and improve the relevance of the retrieved context, which both gets around context window limits and increases the probability that the model will see the information it needs to answer your question.
Essentially, an embedding function takes a word or phrase and maps it to a vector of floating point numbers; these are typically stored in a database that supports a vector search index. The retrieval step then uses a semantic similarity search, often using the cosine of the angle between the query’s embedding and the stored vectors, to find “nearby” information to use in the augmented prompt.
Fine-tuning LLMs is a supervised learning process that involves adjusting the model’s parameters to a specific task. It’s done by training the model on a smaller, task-specific or domain-specific data set that’s labeled with examples relevant to the target task. Fine-tuning often takes hours or days using many server-level GPUs and requires hundreds or thousands of tagged exemplars.
You can install the Python version of LlamaIndex three ways: from the source code in the GitHub repository, using the llama-index
starter install, or using llama-index-core
plus selected integrations. The starter installation would look like this:
pip install llama-index
This pulls in OpenAI LLMs and embeddings in addition to the LlamaIndex core. You’ll need to supply your OpenAI API key (see here) before you can run examples that use it. The LlamaIndex starter example is quite straightforward, essentially five lines of code after a couple of simple setup steps. There are many more examples in the repo, with documentation.
Doing the custom installation might look something like this:
pip install llama-index-core llama-index-readers-file llama-index-llms-ollama llama-index-embeddings-huggingface
That installs an interface to Ollama and Hugging Face embeddings. There’s a local starter example that goes with this installation. No matter which way you start, you can always add more interface modules with pip
.
If you prefer to write your code in JavaScript or TypeScript, use LlamaIndex.TS (repo). One advantage of the TypeScript version is that you can run the examples online on StackBlitz without any local setup. You’ll still need to supply an OpenAI API key.
LlamaCloud is a cloud service that allows you to upload, parse, and index documents and search them using LlamaIndex. It’s in a private alpha stage, and I was unable to get access to it. LlamaParse is a component of LlamaCloud that allows you to parse PDFs into structured data. It’s available via a REST API, a Python package, and a web UI. It is currently in a public beta. You can sign up to use LlamaParse for a small usage-based fee after the first 7K pages a week. The example given comparing LlamaParse and PyPDF for the Apple 10K filing is impressive, but I didn’t test this myself.
LlamaHub gives you access to a large collection of integrations for LlamaIndex. These include agents, callbacks, data loaders, embeddings, and about 17 other categories. In general, the integrations are in the LlamaIndex repository, PyPI, and NPM, and can be loaded with pip install
or npm install
.
create-llama is a command-line tool that generates LlamaIndex applications. It’s a fast way to get started with LlamaIndex. The generated application has a Next.js powered front end and a choice of three back ends.
RAG CLI is a command-line tool for chatting with an LLM about files you have saved locally on your computer. This is only one of many use cases for LlamaIndex, but it’s quite common.
The LlamaIndex Component Guides give you specific help for the various parts of LlamaIndex. The first screenshot below shows the component guide menu. The second shows the component guide for prompts, scrolled to a section about customizing prompts.
Once you’ve read, understood, and run the starter example in your preferred programming language (Python or TypeScript, I suggest that you read, understand, and try as many of the other examples as look interesting. The screenshot below shows the result of generating a file called essay by running essay.ts and then asking questions about it using chatEngine.ts. This is an example of using RAG for Q&A.
The chatEngine.ts program uses the ContextChatEngine, Document, Settings, and VectorStoreIndex components of LlamaIndex. When I looked at the source code, I saw that it relied on the OpenAI gpt-3.5-turbo-16k model; that may change over time. The VectorStoreIndex module seemed to be using the open-source, Rust-based Qdrant vector database, if I was reading the documentation correctly.
As you’ve seen, LlamaIndex is fairly easy to use to create LLM applications. I was able to test it against OpenAI LLMs and a file data source for a RAG Q&A application with no issues. As a reminder, LlamaIndex integrates with over 40 vector stores, over 40 LLMs, and over 160 data sources; it works for several use cases, including Q&A, structured extraction, chat, semantic search, and agents.
I’d suggest evaluating LlamaIndex along with LangChain, Semantic Kernel, and Haystack. It’s likely that one or more of them will meet your needs. I can’t recommend one over the others in a general way, as different applications have different requirements.
Open source: free. LlamaParse import service: 7K pages per week free, then $3 per 1000 pages.
Python and TypeScript, plus cloud SaaS (currently in private preview).
Next read this:
Posted by Richy George on 15 May, 2024
This post was originally published on this siteMost people assume that analytical databases, or OLAPs, are big, powerful beasts—and they are correct. Systems like Snowflake, Redshift, or Postgres involve a lot of setup and maintenance, even in their cloud-hosted incarnations. But what if all you want is “just enough” analytics for a dataset on your desktop? In that case, DuckDB is worth exploring.
DuckDB is a tiny but powerful analytics database engine—a single, self-contained executable, which can run standalone or as a loadable library inside a host process. There’s very little you need to set up or maintain with DuckDB. In this way, it is more like SQLite than the bigger analytical databases in its class.
DuckDB is designed for column-oriented data querying. It ingests data from sources like CSV, JSON, and Apache Parquet, and enables fast querying using familiar SQL syntax. DuckDB supports libraries for all the major programming languages, so you can work with it programmatically using the language of your choice. Or you can use DuckDB’s command-line interface, either on its own or as part of a shell pipeline.
When you work with data in DuckDB, there are two modes you can use for that data. Persistent mode writes the data to disk so it can handle workloads bigger than system memory. This approach comes at the cost of some speed. In-memory mode keeps the data set entirely in memory, which is faster but retains nothing once the program ends. (SQLite can be used the same way.)
DuckDB can ingest data from a variety of formats. CSV, JSON, and Apache Parquet files are three of the most common. With CSV and JSON, DuckDB by default attempts to figure out the columns and data types on its own, but you can override that process as needed—for instance, to specify a format for a date column.
Other databases, like MySQL or Postgres, can also be used as data sources. You’ll need to load a DuckDB extension (more on this later) and provide a connection string to the database server; DuckDB doesn’t read the files for those databases directly. With SQLite, though, you connect to the SQLite database file as though it were just another data file.
To load data into DuckDB from an external source, you can use an SQL string, passed directly into DuckDB:
SELECT * FROM read_csv('data.csv');
You can also use methods in the DuckDB interface library for a given language. With the Python library for DuckDB, ingesting looks like this:
import duckdb
duckdb.read_csv("data.csv")
You can also query certain file formats directly, like Parquet:
SELECT * FROM 'test.parquet';
You can also issue file queries to create a persistent data view, which is usable as a table for multiple queries:
CREATE VIEW test_data AS SELECT * FROM read_parquet('test.parquet');
DuckDB has optimizations for working with Parquet files, so that it reads only what it needs from the file.
Other interfaces like ADBC and ODBC can also be used. ODBC serves as a connector for data visualization tools like Tableau.
Data imported into DuckDB can also be re-exported in many common formats: CSV, JSON, Parquet, Microsoft Excel, and others. This makes DuckDB useful as a data-conversion tool in a processing pipeline.
Once you’ve loaded data into DuckDB, you can query it using SQL expressions. The format for such expressions is no different from regular SQL queries:
SELECT * FROM users WHERE ID>1000 ORDER BY Name DESC LIMIT 5;
If you’re using a client API to query DuckDB, you can pass SQL strings through the API, or you can use the client’s relational API to build up queries programmatically. In Python, reading from a JSON file and querying it might look like this:
import duckdb
file = duckdb.read_json("users.json")
file.select("*").filter("ID>1000").order("Name").limit(5)
If you use Python, you can use the PySpark API to query DuckDB directly, although DuckDB’s implementation of PySpark doesn’t yet support the full feature set.
DuckDB’s dialect of SQL closely follows most common SQL dialects, although it comes with a few gratuitous additions for the sake of analytics. For instance, placing the SAMPLE clause in a query lets you run a query using only a subset of the data in a table. The resulting query runs faster but it may be less accurate. DuckDB also supports the PIVOT
keyword (for creating pivot tables), window functions and QUALIFY
clauses to filter them, and many other analytics functions in its SQL dialect.
DuckDB isn’t limited to the data formats and behaviors baked into it. Its extension API makes it possible to write third-party add-ons for DuckDB to support new data formats or other behaviors.
Some of the functionality included with DuckDB is implemented through first-party add-ons, like support for Parquet files. Others, like MySQL or Postgres connectivity, or vector similarity search, are also maintained by DuckDB’s team but provided separately.
Next read this:
Posted by Richy George on 29 April, 2024
This post was originally published on this siteAt the end of March 2024, Mike Stonebraker announced in a blog post the release of DBOS Cloud, “a transactional serverless computing platform, made possible by a revolutionary new operating system, DBOS, that implements OS services on top of a distributed database.” That sounds odd, to put it mildly, but it makes more sense when you read the origin story:
The idea for DBOS (DataBase oriented Operating System) originated 3 years ago with my realization that the state an operating system must maintain (files, processes, threads, messages, etc.) has increased in size by about 6 orders of magnitude since I began using Unix on a PDP-11/40 in 1973. As such, storing OS state is a database problem. Also, Linux is legacy code at the present time and is having difficulty making forward progress. For example there is no multi-node version of Linux, requiring people to run an orchestrator such as Kubernetes. When I heard a talk by Matei Zaharia in which he said Databricks could not use traditional OS scheduling technology at the scale they were running and had turned to a DBMS solution instead, it was clear that it was time to move the DBMS into the kernel and build a new operating system.”
If you don’t know Stonebraker, he’s been a database-focused computer scientist (and professor) since the early 1970s, when he and his UC Berkeley colleagues Eugene Wong and Larry Rowe founded Ingres. Ingres later inspired Sybase, which was eventually the basis for Microsoft SQL Server. After selling Ingres to Computer Associates, Stonebraker and Rowe started researching Postgres, which later became PostgreSQL and also evolved into Illustra, which was purchased by Informix.
I heard Stonebraker talk about Postgres at a DBMS conference in 1980. What I got out of that talk, aside from an image of “jungle drums” calling for SQL, was the idea that you could add support for complex data types to the database by implementing new index types, extending the query language, and adding support for that to the query parser and optimizer. The example he used was geospatial information, and he explained one kind of index structure that would make 2D geometric database queries go very fast. (This facility eventually became PostGIS. The R-tree currently used by default in PostGIS GiST indexes wasn’t invented until 1984, so Mike was probably talking about the older quadtree index.)
Skipping ahead 44 years, it should surprise precisely nobody in the database field that DBOS uses a distributed version of PostgreSQL as its kernel database layer.
DBOS Transact, an open-source TypeScript framework, supports Postgres-compatible transactions, reliable workflow orchestration, HTTP serving using GET and POST, communication with external services and third-party APIs, idempotent requests using UUID keys, authentication and authorization, Kafka integration with exactly-once semantics, unit testing, and self-hosting. DBOS Cloud, a transactional serverless platform for deploying DBOS Transact applications, supports serverless app deployment, time-travel debugging, cloud database management, and observability.
Let’s highlight some major areas of interest.
The code shown in the screenshot below demonstrates transactions, as well as HTTP serving using GET. It’s worthwhile to read the code closely. It’s only 18 lines, not counting blank lines.
The first import (line 1) brings in the DBOS SDK classes that we’ll need. The second import (line 2) brings in the Knex.js SQL query builder, which handles sending the parameterized query to the Postgres database and returning the resulting rows. The database table schema is defined in lines 4 through 8; the only columns are a name
string and a greet_count
integer.
There is only one method in the Hello
class, helloTransaction
. It is wrapped in @GetApi
and @Transaction
decorators, which respectively cause the method to be served in response to an HTTP GET
request on the path /greeting/
followed by the username parameter you want to pass in and wrap the database call in a transaction, so that two instances can’t update the database simultaneously.
The database query string (line 16) uses PostgreSQL syntax to try to insert a row into the database for the supplied name and an initial count of 1. If the row already exists, then the ON CONFLICT
trigger runs an update operation that increments the count in the database.
Line 17 uses Knex.js to send the SQL query to the DBOS system database and retrieves the result. Line 18 pulls the count out of the first row of results and returns the greeting string to the calling program.
The use of SQL and a database for what feels like should be a core in-memory system API, such as a Linux atomic counter or a Windows interlocked variable, seems deeply weird. Nevertheless, it works.
When you run an application in DBOS Cloud it records every step and change it makes (the workflow) in the database. You can debug that using Visual Studio Code and the DBOS Time Travel Debugger extension. The time-travel debugger allows you to debug your DBOS application against the database as it existed at the time the selected workflow originally executed.
The DBOS Quickstart tutorial requires Node.js 20 or later and a PostgreSQL database you can connect to, either locally, in a Docker container, or remotely. I already had Node.js v20.9.0 installed on my M1 MacBook, but I upgraded it to v20.12.1 from the Node.js website.
I didn’t have PostgreSQL installed, so I downloaded and ran the interactive installer for v16.2 from EnterpriseDB. This installer creates a full-blown macOS server and applications. If I had used Homebrew instead, it would have created command-line applications, and if I had used Postgres.app, I would have gotten a menu-bar app.
The Quickstart proper starts by creating a DBOS app directory using Node.js.
martinheller@Martins-M1-MBP ~ % npx -y @dbos-inc/create@latest -n myapp Merged .gitignore files saved to myapp/.gitignore added 590 packages, and audited 591 packages in 25s found 0 vulnerabilities added 1 package, and audited 592 packages in 1s found 0 vulnerabilities added 129 packages, and audited 721 packages in 5s found 0 vulnerabilities Application initialized successfully!
Then you configure the app to use your Postgres server and export your Postgres password into an enviroment variable.
martinheller@Martins-M1-MBP ~ % cd myapp martinheller@Martins-M1-MBP myapp % npx dbos configure ? What is the hostname of your Postgres server? localhost ? What is the port of your Postgres server? 5432 ? What is your Postgres username? postgres martinheller@Martins-M1-MBP myapp % export PGPASSWORD=*********
After that, you create a “Hello” database using Node.js and Knex.js.
martinheller@Martins-M1-MBP myapp % npx dbos migrate 2024-04-09 15:01:42 [info]: Starting migration: creating database hello if it does not exist 2024-04-09 15:01:42 [info]: Database hello does not exist, creating... 2024-04-09 15:01:42 [info]: Executing migration command: npx knex migrate:latest 2024-04-09 15:01:43 [info]: Batch 1 run: 1 migrations 2024-04-09 15:01:43 [info]: Creating DBOS tables and system database. 2024-04-09 15:01:43 [info]: Migration successful!
With that complete, you build and run the DBOS app locally.
martinheller@Martins-M1-MBP myapp % npm run build npx dbos start > myapp@0.0.1 build > tsc 2024-04-09 15:02:30 [info]: Workflow executor initialized 2024-04-09 15:02:30 [info]: HTTP endpoints supported: 2024-04-09 15:02:30 [info]: GET : /greeting/:user 2024-04-09 15:02:30 [info]: DBOS Server is running at http://localhost:3000 2024-04-09 15:02:30 [info]: DBOS Admin Server is running at http://localhost:3001 ^C
At this point, you can browse to http://localhost:3000 to test the application. That done, you register for the DBOS Cloud and provision your own database there.
martinheller@Martins-M1-MBP myapp % npx dbos-cloud register -u meheller 2024-04-09 15:11:35 [info]: Welcome to DBOS Cloud! 2024-04-09 15:11:35 [info]: Before creating an account, please tell us a bit about yourself! Enter First/Given Name: Martin Enter Last/Family Name: Heller Enter Company: self 2024-04-09 15:12:06 [info]: Please authenticate with DBOS Cloud! Login URL: https://login.dbos.dev/activate?user_code=QWKW-TXTB 2024-04-09 15:12:12 [info]: Waiting for login... 2024-04-09 15:12:17 [info]: Waiting for login... 2024-04-09 15:12:22 [info]: Waiting for login... 2024-04-09 15:12:27 [info]: Waiting for login... 2024-04-09 15:12:32 [info]: Waiting for login... 2024-04-09 15:12:38 [info]: Waiting for login... 2024-04-09 15:12:44 [info]: meheller successfully registered! martinheller@Martins-M1-MBP myapp % npx dbos-cloud db provision iw_db -U meheller Database Password: ******** 2024-04-09 15:19:22 [info]: Successfully started provisioning database: iw_db 2024-04-09 15:19:28 [info]: {"PostgresInstanceName":"iw_db","HostName":"userdb-51fcc211-6ed3-4450-a90e-0f864fc1066c.cvc4gmaa6qm9.us-east-1.rds.amazonaws.com","Status":"available","Port":5432,"DatabaseUsername":"meheller","AdminUsername":"meheller"} 2024-04-09 15:19:28 [info]: Database successfully provisioned!
Finally, you can register and deploy your app in the DBOS Cloud.
martinheller@Martins-M1-MBP myapp % npx dbos-cloud app register -d iw_db 2024-04-09 15:20:09 [info]: Loaded application name from package.json: myapp 2024-04-09 15:20:09 [info]: Registering application: myapp 2024-04-09 15:20:11 [info]: myapp ID: d8806829-c5b8-4df0-8b5a-2d1bf87c3322 2024-04-09 15:20:11 [info]: Successfully registered myapp! martinheller@Martins-M1-MBP myapp % npx dbos-cloud app deploy 2024-04-09 15:20:35 [info]: Loaded application name from package.json: myapp 2024-04-09 15:20:35 [info]: Submitting deploy request for myapp 2024-04-09 15:21:09 [info]: Submitted deploy request for myapp. Assigned version: 1712676035 2024-04-09 15:21:13 [info]: Waiting for myapp with version 1712676035 to be available 2024-04-09 15:21:21 [info]: Successfully deployed myapp! 2024-04-09 15:21:21 [info]: Access your application at https://meheller-myapp.cloud.dbos.dev/
The “Hello” application does illustrate some of the core features of DBOS Transact and the DBOS Cloud, but it’s so basic that it’s barely a toy. The Programming Quickstart adds a few more details, and it’s worth your time to go through it. You’ll learn how to use communicator functions to access third-party services (email, in this example) as well as how to compose reliable workflows. You’ll literally interrupt the workflow and restart it without re-sending the email: DBOS workflows always run to completion and each of their operations executes once and only once. That’s possible because DBOS persists the output of each step in your database.
Once you’ve understood the programming Quickstart, you’ll be ready to try out the two DBOS demo applications, which do rise to the level of being toys. Both demos use Next.js for their front ends, and both use DBOS workflows, transactions, and communicators.
The first demo, E-Commerce, is a web shopping and payment processing system. It’s worthwhile reading the Under the Covers section of the README in the demo’s repository to understand how it works and how you might want to upgrade it to, for example, use a real-world payment provider.
The second demo, YKY Social, simulates a simple social network, and uses TypeORM rather than Knex.js for its database code. It also uses Amazon S3 for profile photos. If you’re serious about using DBOS yourself, you should work though both demo applications.
I have to say that DBOS and DBOS Cloud look very interesting. Reliable execution and time-travel debugging, for example, are quite desirable. On the other hand, I wouldn’t want to build a real application on DBOS or DBOS Cloud at this point. I have lots of questions, starting with “How does it scale in practice?” and probably ending with “How much will it cost at X scale?”
I mentioned earlier that DBOS code looks weird but works. I would imagine that any programming shop considering writing an application on it would be discouraged or even repelled by the “it looks weird” part, as developers tend to be set in their ways until what they are doing no longer works.
I also have to point out that the current implementation of DBOS is very far from the system diagram you saw near the beginning of this review. Where’s the minimal kernel? DBOS currently runs on macOS, Linux, and Windows. None of those are minimal kernels. DBOS Cloud currently runs on AWS. Again, not a minimal kernel.
So, overall, DBOS is a tantalizing glimpse of something that may eventually turn out to be cool. It’s new and shiny, and it comes from smart people, but it will be awhile before it could possibly become a mainstream system.
—
Cost: Free with usage limits; paid plans require you to contact sales.
Platform: macOS, Linux, Windows, AWS.
Next read this:
Posted by Richy George on 26 March, 2024
This post was originally published on this siteVertex AI Studio is an online environment for building AI apps, featuring Gemini, Google’s own multimodal generative AI model that can work with text, code, audio, images, and video. In addition to Gemini, Vertex AI provides access to more than 40 proprietary models and more than 60 open source models in its Model Garden, for example the proprietary PaLM 2, Imagen, and Codey models from Google Research, open source models like Llama 2 from Meta, and Claude 2 and Claude 3 from Anthropic. Vertex AI also offers pre-trained APIs for speech, natural language, translation, and vision.
Vertex AI supports prompt engineering, hyper-parameter tuning, retrieval-augmented generation (RAG), and model tuning. You can tune foundation models with your own data, using tuning options such as adapter tuning and reinforcement learning from human feedback (RLHF), or perform style and subject tuning for image generation.
Vertex AI Extensions connect models to real-world data and real-time actions. Vertex AI allows you to work with models both in the Google Cloud console and via APIs in Python, Node.js, Java, and Go.
Competitive products include Amazon Bedrock, Azure AI Studio, LangChain/LangSmith, LlamaIndex, Poe, and the ChatGPT GPT Builder. The technical levels, scope, and programming language support of these products vary.
Vertex AI Studio is a Google Cloud console tool for building and testing generative AI models. It allows you to design and test prompts and customize foundation models to meet your application’s needs.
Foundation models are another term for the generative AI models found in Vertex AI. Calling them foundation models emphasizes the fact that they can be customized with your data for the specialized purposes of your application. They can generate text, chat, image, code, video, multimodal data, and embeddings.
Embeddings are vector representations of other data, for example text. Search engines often use vector embeddings, a cosine metric, and a nearest-neighbor algorithm to find text that is relevant (similar) to a query string.
The proprietary Google generative AI models available in Vertex AI include:
Vertex AI Studio allows you to test models using prompt samples. The prompt galleries are organized by the type of model (multimodal, text, vision, or speech) and the task being demonstrated, for example “summarize key insights from a financial report table” (text) or “read the text from this handwritten note image” (multimodal).
Vertex AI also helps you to design and save your own prompts. The types of prompt are broken down by purpose, for example text generation versus code generation and single-shot versus chat. Iterating on your prompts is a surprisingly powerful way of customizing a model to produce the output you want, as we’ll discuss below.
When prompt engineering isn’t enough to coax a model into producing the desired output, and you have a training data set in a suitable format, you can take the next step and tune a foundation model in one of several ways: supervised tuning, RLHF tuning, or distillation. Again, we’ll discuss this in more detail later on in this review.
The Vertex AI Studio speech tool can convert speech to text and text to speech. For text to speech you can choose your preferred voice and control its speed. For speech to text, Vertex AI Studio uses the Chirp model, but has length and file format limits. You can circumvent those by using the Cloud Speech-to-Text Console instead.
As you can see in the diagram below, Google Vertex AI’s generative AI workflow is a bit more complicated than simply throwing a prompt over the wall and getting a response back. Google’s responsible AI and safety filter applies both to the input and output, shielding the model from malicious prompts and the user from malicious responses.
The foundation model that processes the query can be pre-trained or tuned. Model tuning, if desired, can be performed using several methods, all of which are out-of-band for the query/response workflow and quite time-consuming.
If grounding is required, it’s applied here. The diagram shows the grounding service after the model in the flow; that’s not exactly how RAG works, as I explained in January. Out-of-band, you build your vector database. In-band, you generate an embedding vector for the query, use it to perform a similarity search against the vector database, and finally you include what you’ve retrieved from the vector database as an augmentation to the original query and pass it to the model.
At this point, the model generates answers, possibly based on multiple documents. The workflow allows for the inclusion of citations before sending the response back to the user through the safety filter.
As you might expect from the way RAG works, Vertex AI requires you to take a few steps to enable RAG. First, you need to “onboard to Vertex AI Search and Conversation,” a matter of a few clicks and a few minutes of waiting. Then you need to create an AI Search data store, which can be accomplished by crawling websites, importing data from a BigQuery table, importing data from a Cloud Storage bucket (PDF, HTML, TXT, JSONL, CSV, DOCX, or PPTX formats), or by calling an API.
Finally, you need to set up a prompt with a model that supports RAG (currently only text-bison and chat-bison, both PaLM 2 language models) and configure it to use your AI Search and Conversation data store. If you are using the Vertex AI console, this setup is in the advanced section of the prompt parameters, as shown in the first screenshot below. If you are using the Vertex AI API, this setup is in the groundingConfig
section of the parameters:
{ "instances": [ { "prompt": "PROMPT"} ], "parameters": { "temperature": TEMPERATURE, "maxOutputTokens": MAX_OUTPUT_TOKENS, "topP": TOP_P, "topK": TOP_K, "groundingConfig": { "sources": [ { "type": "VERTEX_AI_SEARCH", "vertexAiSearchDatastore": "VERTEX_AI_SEARCH_DATA_STORE" } ] } } }
Note that grounding or RAG may or may not be needed, depending on how and when the model was trained.
Google’s proprietary models offer some of the added value of the Vertex AI site. Gemini was unique in being a multimodal model (as well as a text and code generation model) as recently as a few weeks before I wrote this. Then OpenAI GPT-4 incorporated DALL-E, which allowed it to generate text or images. Currently, Gemini can generate text from images and videos, but GPT-4/DALL-E can’t.
Gemini versions currently offered on Vertex AI include Gemini Pro, a language model with “the best performing Gemini model with features for a wide range of tasks;” Gemini Pro Vision, a multimodal model “created from the ground up to be multimodal (text, images, videos) and to scale across a wide range of tasks;” and Gemma, “open checkpoint variants of Google DeepMind’s Gemini model suited for a variety of text generation tasks.”
Additional Gemini versions have been announced: Gemini 1.0 Ultra, Gemini Nano (to run on devices), and Gemini 1.5 Pro, a mixture-of-experts (MoE) mid-size multimodal model, optimized for scaling across a wide range of tasks, that performs at a similar level to Gemini 1.0 Ultra. According to Demis Hassabis, CEO and co-founder of Google DeepMind, Gemini 1.5 Pro comes with a standard 128,000 token context window, but a limited group of customers can try it with a context window of up to 1 million tokens via Vertex AI in private preview.
Imagen 2 is a text-to-image diffusion model from Google Brain Research that Google says has “an unprecedented degree of photorealism and a deep level of language understanding.” It’s competitive with DALL-E 3, Midjourney 6, and Adobe Firefly 2, among others.
Chirp is a version of a Universal Speech Model that has over 2B parameters and can transcribe in over 100 languages in a single model. It can turn audio speech to formatted text, caption videos for subtitles, and transcribe audio content for entity extraction and content classification.
Codey exists in versions for code completion (code-gecko), code generation (̉code-bison), and code chat (codechat-bison). The Codey APIs support the Go, GoogleSQL, Java, JavaScript, Python, and TypeScript languages, and Google Cloud CLI, Kubernetes Resource Model (KRM), and Terraform infrastructure as code. Codey competes with GitHub Copilot, StarCoder 2, CodeLlama, LocalLlama, DeepSeekCoder, CodeT5+, CodeBERT, CodeWhisperer, Bard, and various other LLMs that have been fine-tuned on code such as OpenAI Codex, Tabnine, and ChatGPTCoding.
PaLM 2 exists in versions for text (text-bison and text-unicorn), chat (̉chat-bison), and security-specific tasks (sec-palm, currently only available by invitation). PaLM 2 text-bison is good for summarization, question answering, classification, sentiment analysis, and entity extraction. PaLM 2 chat-bison is fine-tuned to conduct natural conversation, for example to perform customer service and technical support or serve as a conversational assistant for websites. PaLM 2 text-unicorn, the largest model in the PaLM family, excels at complex tasks such as coding and chain-of-thought (CoT).
Google also provides embedding models for text (textembedding-gecko and textembedding-gecko-multilingual) and multimodal (multimodalembedding). Embeddings plus a vector database (Vertex AI Search) allow you to implement semantic or similarity search and RAG, as described above.
In addition to Google’s proprietary models, the Model Garden (documentation) currently offers roughly 90 open-source models and 38 task-specific solutions. In general, the models have model cards. The Google models are available through Vertex AI APIs and Google Colab as well as in the Vertex AI console. The APIs are billed on a usage basis.
The other models are typically available in Colab Enterprise and can be deployed as an endpoint. Note that endpoints are deployed on serious instances with accelerators (for example 96 CPUs and 8 GPUs), and therefore accrue significant charges as long as they are deployed.
Foundation models offered include Claude 3 Opus (coming soon), Claude 3 Sonnet (preview), Claude 3 Haiku (coming soon), Llama 2, and Stable Diffusion v1-5. Fine-tunable models include PyTorch-ZipNeRF for 3D reconstruction, AutoGluon for tabular data, Stable Diffusion LoRA (MediaPipe) for text to image generation, and ̉̉MoViNet Video Action Recognition.
The Google AI prompt design strategies page does a decent and generally vendor-neutral job of explaining how to design prompts for generative AI. It emphasizes clarity, specificity, including examples (few-shot learning), adding contextual information, using prefixes for clarity, letting models complete partial inputs, breaking down complex prompts into simpler components, and experimenting with different parameter values to optimize results.
Let’s look at three examples, one each for multimodal, text, and vision. The multimodal example is interesting because it uses two images and a text question to get an answer.
Page 2
It’s almost always worthwhile to try prompt engineering first, but if that fails, the next step to customize a base model for your own purposes is model tuning. The Google AI guidance on model tuning and model tuning with AI Studio is very good, and to the point.
Currently Vertex AI only supports supervised fine-tuning of two text foundation models, Gemini 1.0 Pro and text-bison-001. While you can sometimes get by with as few as 20 examples when you’re doing supervised learning for fine-tuning, the usual recommendations from Google are listed in the table below.
Task |
No. of examples in data set |
Classification |
100+ |
Summarization |
100-500+ |
Document search |
100+ |
—
If you’d like to try out fine-tuning for free, you can run it in Colab using this Python Quickstart.
There are two supported methods for fine-tuning text models in AI Studio, supervised tuning and RLHF tuning. Google recommends supervised tuning for classification, sentiment analysis, entity extraction, summarization of content that’s not complex, and domain-specific queries. Google recommends RLHF tuning for question answering, summarization of complex content, and content creation. However, supervised tuning is the only option for code models.
You can also tune embedding models and create distilled text models. Distilled text models use a large, capable teacher model and a labeled or an unlabeled training data set to train a smaller but more accurate student model.
If all of the above fails, your next step might be continued pre-training. The good news about that is that it uses unlabeled data. The bad news is that it requires lots of exemplars, takes days to run, and can be quite expensive.
Overall, Vertex AI Studio is a promising product that could potentially compete strongly with Amazon Bedrock and Azure AI Studio. On the other hand, Google has been busy shooting itself in the foot. The company mismanaged its Gemini Image rollout to the point where co-founder Sergey Brin returned from wherever he has been hiding to say “We definitely messed up on the image generation.” I won’t repeat my rant about Google’s history of eating its young from my review of Project IDX, but you can read it at the end of that article.
There are lots of good things about Vertex AI Studio, including its use of Google’s own models, its rapid adoption and deployment of new models from other vendors, and its straightforward support for RAG and model tuning. Meanwhile, why are the Generative AI Extensions—potentially the most useful facility of Vertex AI Studio, and the piece that competes with OpenAI GPTs—buried in a private preview?
As far as which AI app building platform you should choose, if you’re already heavily invested in the Google Cloud, then using Google Vertex AI Studio for building AI apps is probably a no-brainer, as long as you can get access to all the models and capabilities that you need, rather than be told that you can’t have them because they are in private preview.
Given Google’s investment in its cloud platform, I don’t seriously expect Vertex AI Studio to be killed outright in the next couple of years, but I wouldn’t be at all surprised by yet another rebranding.
—
Cost: Cost is based on usage. See https://cloud.google.com/vertex-ai/pricing#generative_ai_models.
Platform: Google Cloud Platform.
Next read this:
Posted by Richy George on 26 March, 2024
This post was originally published on this siteVertex AI Studio is an online environment for building AI apps, featuring Gemini, Google’s own multimodal generative AI model that can work with text, code, audio, images, and video. In addition to Gemini, Vertex AI provides access to more than 40 proprietary models and more than 60 open source models in its Model Garden, for example the proprietary PaLM 2, Imagen, and Codey models from Google Research, open source models like Llama 2 from Meta, and Claude 2 and Claude 3 from Anthropic. Vertex AI also offers pre-trained APIs for speech, natural language, translation, and vision.
Vertex AI supports prompt engineering, hyper-parameter tuning, retrieval-augmented generation (RAG), and model tuning. You can tune foundation models with your own data, using tuning options such as adapter tuning and reinforcement learning from human feedback (RLHF), or perform style and subject tuning for image generation.
Vertex AI Extensions connect models to real-world data and real-time actions. Vertex AI allows you to work with models both in the Google Cloud console and via APIs in Python, Node.js, Java, and Go.
Competitive products include Amazon Bedrock, Azure AI Studio, LangChain/LangSmith, LlamaIndex, Poe, and the ChatGPT GPT Builder. The technical levels, scope, and programming language support of these products vary.
Vertex AI Studio is a Google Cloud console tool for building and testing generative AI models. It allows you to design and test prompts and customize foundation models to meet your application’s needs.
Foundation models are another term for the generative AI models found in Vertex AI. Calling them foundation models emphasizes the fact that they can be customized with your data for the specialized purposes of your application. They can generate text, chat, image, code, video, multimodal data, and embeddings.
Embeddings are vector representations of other data, for example text. Search engines often use vector embeddings, a cosine metric, and a nearest-neighbor algorithm to find text that is relevant (similar) to a query string.
The proprietary Google generative AI models available in Vertex AI include:
Vertex AI Studio allows you to test models using prompt samples. The prompt galleries are organized by the type of model (multimodal, text, vision, or speech) and the task being demonstrated, for example “summarize key insights from a financial report table” (text) or “read the text from this handwritten note image” (multimodal).
Vertex AI also helps you to design and save your own prompts. The types of prompt are broken down by purpose, for example text generation versus code generation and single-shot versus chat. Iterating on your prompts is a surprisingly powerful way of customizing a model to produce the output you want, as we’ll discuss below.
When prompt engineering isn’t enough to coax a model into producing the desired output, and you have a training data set in a suitable format, you can take the next step and tune a foundation model in one of several ways: supervised tuning, RLHF tuning, or distillation. Again, we’ll discuss this in more detail later on in this review.
The Vertex AI Studio speech tool can convert speech to text and text to speech. For text to speech you can choose your preferred voice and control its speed. For speech to text, Vertex AI Studio uses the Chirp model, but has length and file format limits. You can circumvent those by using the Cloud Speech-to-Text Console instead.
As you can see in the diagram below, Google Vertex AI’s generative AI workflow is a bit more complicated than simply throwing a prompt over the wall and getting a response back. Google’s responsible AI and safety filter applies both to the input and output, shielding the model from malicious prompts and the user from malicious responses.
The foundation model that processes the query can be pre-trained or tuned. Model tuning, if desired, can be performed using several methods, all of which are out-of-band for the query/response workflow and quite time-consuming.
If grounding is required, it’s applied here. The diagram shows the grounding service after the model in the flow; that’s not exactly how RAG works, as I explained in January. Out-of-band, you build your vector database. In-band, you generate an embedding vector for the query, use it to perform a similarity search against the vector database, and finally you include what you’ve retrieved from the vector database as an augmentation to the original query and pass it to the model.
At this point, the model generates answers, possibly based on multiple documents. The workflow allows for the inclusion of citations before sending the response back to the user through the safety filter.
As you might expect from the way RAG works, Vertex AI requires you to take a few steps to enable RAG. First, you need to “onboard to Vertex AI Search and Conversation,” a matter of a few clicks and a few minutes of waiting. Then you need to create an AI Search data store, which can be accomplished by crawling websites, importing data from a BigQuery table, importing data from a Cloud Storage bucket (PDF, HTML, TXT, JSONL, CSV, DOCX, or PPTX formats), or by calling an API.
Finally, you need to set up a prompt with a model that supports RAG (currently only text-bison and chat-bison, both PaLM 2 language models) and configure it to use your AI Search and Conversation data store. If you are using the Vertex AI console, this setup is in the advanced section of the prompt parameters, as shown in the first screenshot below. If you are using the Vertex AI API, this setup is in the groundingConfig
section of the parameters:
{ "instances": [ { "prompt": "PROMPT"} ], "parameters": { "temperature": TEMPERATURE, "maxOutputTokens": MAX_OUTPUT_TOKENS, "topP": TOP_P, "topK": TOP_K, "groundingConfig": { "sources": [ { "type": "VERTEX_AI_SEARCH", "vertexAiSearchDatastore": "VERTEX_AI_SEARCH_DATA_STORE" } ] } } }
Note that grounding or RAG may or may not be needed, depending on how and when the model was trained.
Google’s proprietary models offer some of the added value of the Vertex AI site. Gemini was unique in being a multimodal model (as well as a text and code generation model) as recently as a few weeks before I wrote this. Then OpenAI GPT-4 incorporated DALL-E, which allowed it to generate text or images. Currently, Gemini can generate text from images and videos, but GPT-4/DALL-E can’t.
Gemini versions currently offered on Vertex AI include Gemini Pro, a language model with “the best performing Gemini model with features for a wide range of tasks;” Gemini Pro Vision, a multimodal model “created from the ground up to be multimodal (text, images, videos) and to scale across a wide range of tasks;” and Gemma, “open checkpoint variants of Google DeepMind’s Gemini model suited for a variety of text generation tasks.”
Additional Gemini versions have been announced: Gemini 1.0 Ultra, Gemini Nano (to run on devices), and Gemini 1.5 Pro, a mixture-of-experts (MoE) mid-size multimodal model, optimized for scaling across a wide range of tasks, that performs at a similar level to Gemini 1.0 Ultra. According to Demis Hassabis, CEO and co-founder of Google DeepMind, Gemini 1.5 Pro comes with a standard 128,000 token context window, but a limited group of customers can try it with a context window of up to 1 million tokens via Vertex AI in private preview.
Imagen 2 is a text-to-image diffusion model from Google Brain Research that Google says has “an unprecedented degree of photorealism and a deep level of language understanding.” It’s competitive with DALL-E 3, Midjourney 6, and Adobe Firefly 2, among others.
Chirp is a version of a Universal Speech Model that has over 2B parameters and can transcribe in over 100 languages in a single model. It can turn audio speech to formatted text, caption videos for subtitles, and transcribe audio content for entity extraction and content classification.
Codey exists in versions for code completion (code-gecko), code generation (̉code-bison), and code chat (codechat-bison). The Codey APIs support the Go, GoogleSQL, Java, JavaScript, Python, and TypeScript languages, and Google Cloud CLI, Kubernetes Resource Model (KRM), and Terraform infrastructure as code. Codey competes with GitHub Copilot, StarCoder 2, CodeLlama, LocalLlama, DeepSeekCoder, CodeT5+, CodeBERT, CodeWhisperer, Bard, and various other LLMs that have been fine-tuned on code such as OpenAI Codex, Tabnine, and ChatGPTCoding.
PaLM 2 exists in versions for text (text-bison and text-unicorn), chat (̉chat-bison), and security-specific tasks (sec-palm, currently only available by invitation). PaLM 2 text-bison is good for summarization, question answering, classification, sentiment analysis, and entity extraction. PaLM 2 chat-bison is fine-tuned to conduct natural conversation, for example to perform customer service and technical support or serve as a conversational assistant for websites. PaLM 2 text-unicorn, the largest model in the PaLM family, excels at complex tasks such as coding and chain-of-thought (CoT).
Google also provides embedding models for text (textembedding-gecko and textembedding-gecko-multilingual) and multimodal (multimodalembedding). Embeddings plus a vector database (Vertex AI Search) allow you to implement semantic or similarity search and RAG, as described above.
In addition to Google’s proprietary models, the Model Garden (documentation) currently offers roughly 90 open-source models and 38 task-specific solutions. In general, the models have model cards. The Google models are available through Vertex AI APIs and Google Colab as well as in the Vertex AI console. The APIs are billed on a usage basis.
The other models are typically available in Colab Enterprise and can be deployed as an endpoint. Note that endpoints are deployed on serious instances with accelerators (for example 96 CPUs and 8 GPUs), and therefore accrue significant charges as long as they are deployed.
Foundation models offered include Claude 3 Opus (coming soon), Claude 3 Sonnet (preview), Claude 3 Haiku (coming soon), Llama 2, and Stable Diffusion v1-5. Fine-tunable models include PyTorch-ZipNeRF for 3D reconstruction, AutoGluon for tabular data, Stable Diffusion LoRA (MediaPipe) for text to image generation, and ̉̉MoViNet Video Action Recognition.
The Google AI prompt design strategies page does a decent and generally vendor-neutral job of explaining how to design prompts for generative AI. It emphasizes clarity, specificity, including examples (few-shot learning), adding contextual information, using prefixes for clarity, letting models complete partial inputs, breaking down complex prompts into simpler components, and experimenting with different parameter values to optimize results.
Let’s look at three examples, one each for multimodal, text, and vision. The multimodal example is interesting because it uses two images and a text question to get an answer.
Page 2
It’s almost always worthwhile to try prompt engineering first, but if that fails, the next step to customize a base model for your own purposes is model tuning. The Google AI guidance on model tuning and model tuning with AI Studio is very good, and to the point.
Currently Vertex AI only supports supervised fine-tuning of two text foundation models, Gemini 1.0 Pro and text-bison-001. While you can sometimes get by with as few as 20 examples when you’re doing supervised learning for fine-tuning, the usual recommendations from Google are listed in the table below.
Task |
No. of examples in data set |
Classification |
100+ |
Summarization |
100-500+ |
Document search |
100+ |
—
If you’d like to try out fine-tuning for free, you can run it in Colab using this Python Quickstart.
There are two supported methods for fine-tuning text models in AI Studio, supervised tuning and RLHF tuning. Google recommends supervised tuning for classification, sentiment analysis, entity extraction, summarization of content that’s not complex, and domain-specific queries. Google recommends RLHF tuning for question answering, summarization of complex content, and content creation. However, supervised tuning is the only option for code models.
You can also tune embedding models and create distilled text models. Distilled text models use a large, capable teacher model and a labeled or an unlabeled training data set to train a smaller but more accurate student model.
If all of the above fails, your next step might be continued pre-training. The good news about that is that it uses unlabeled data. The bad news is that it requires lots of exemplars, takes days to run, and can be quite expensive.
Overall, Vertex AI Studio is a promising product that could potentially compete strongly with Amazon Bedrock and Azure AI Studio. On the other hand, Google has been busy shooting itself in the foot. The company mismanaged its Gemini Image rollout to the point where co-founder Sergey Brin returned from wherever he has been hiding to say “We definitely messed up on the image generation.” I won’t repeat my rant about Google’s history of eating its young from my review of Project IDX, but you can read it at the end of that article.
There are lots of good things about Vertex AI Studio, including its use of Google’s own models, its rapid adoption and deployment of new models from other vendors, and its straightforward support for RAG and model tuning. Meanwhile, why are the Generative AI Extensions—potentially the most useful facility of Vertex AI Studio, and the piece that competes with OpenAI GPTs—buried in a private preview?
As far as which AI app building platform you should choose, if you’re already heavily invested in the Google Cloud, then using Google Vertex AI Studio for building AI apps is probably a no-brainer, as long as you can get access to all the models and capabilities that you need, rather than be told that you can’t have them because they are in private preview.
Given Google’s investment in its cloud platform, I don’t seriously expect Vertex AI Studio to be killed outright in the next couple of years, but I wouldn’t be at all surprised by yet another rebranding.
—
Cost: Cost is based on usage. See https://cloud.google.com/vertex-ai/pricing#generative_ai_models.
Platform: Google Cloud Platform.
Next read this:
Posted by Richy George on 27 February, 2024
This post was originally published on this siteAmazon Web Services’ fully managed service for building, deploying, and scaling generative AI applications, Amazon Bedrock offers a catalog of foundation models, implements retrieval-augmented generation (RAG) and vector embeddings, hosts knowledge bases, implements fine-tuning of foundation models, and allows continued pre-training of selected foundation models.
Amazon Bedrock complements the almost 30 other Amazon machine learning services available, including Amazon Q, the AWS generative AI assistant.
There are currently six major features in Amazon Bedrock:
One major competitor to Amazon Bedrock is Azure AI Studio, which, while still in preview and somewhat under construction, checks most of the boxes for a generative AI application builder. Azure AI Studio is a nice system for picking generative AI models, grounding them with RAG using vector embeddings, vector search, and data, and fine-tuning them, all to create what Microsoft calls copilots, or AI agents.
Another major competitor is Google Vertex AI’s Generative AI Studio, which allows you to tune foundation models with your own data, using tuning options such as adapter tuning and reinforcement learning from human feedback (RLHF), or style and subject tuning for image generation. Generative AI Studio complements the Vertex AI model garden and foundation models as APIs.
Other possible competitors include LangChain (and LangSmith), Poe, and the ChatGPT GPT Builder. LangChain does require you to do some programming.
There are two setup tasks for Bedrock: model setup and API setup. You need to request access to models before you can use them. If you want to use the AWS command line interface or any of the AWS SDKs, you also need to install and configure the CLI or SDK.
I didn’t bother with API setup, as I’m concentrating on using the console for the purposes of this review. Completing the model access request form was easier than it looked, and I was granted access to models faster than I expected.
Amazon Bedrock uses slightly different parameters to control the response of models than, say, OpenAI. Bedrock controls randomness and diversity using the temperature of the probability distribution, the top K, and the top P. It controls the length of the output with the response length, penalties, and stop sequences.
Temperature modulates the probability for the next token. A lower temperature leads to more deterministic responses, and a higher temperature leads to more random responses. In other words, choose a lower temperature to increase the likelihood of higher-probability tokens and decrease the likelihood of lower-probability tokens; choose a higher temperature to increase the likelihood of lower-probability tokens and decrease the likelihood of higher-probability tokens. For example, a high temperature would allow the completion of “I hear the hoof beats of” to include unlikely beasts like unicorns, while a low temperature would weight the output to likely ungulates like horses.
Top K is the number of most-likely candidates that the model considers for the next token. Lower values limit the options to more likely outputs, like horses. Higher values allow the model to choose less likely outputs, like unicorns.
Top P is the percentage of most-likely candidates that the model considers for the next token. As with top K, lower values limit the options to more likely outputs, and higher values allow the model to choose less likely outputs.
Response length controls the number of tokens in the generated response. Penalties can apply to length, repeated tokens, frequency of tokens, and type of tokens in a response. Stop sequences are sequences of characters that stop the model from generating further tokens.
Amazon Bedrock currently displays 33 examples of generative AI model usage, and offers three playgrounds. Playgrounds provide a console environment to experiment with running inference on different models and with different configurations. You can start with one of the playgrounds (chat, text, or image), select a model, construct a prompt, and set the metaparameters. Or you can start with an example and open it in the appropriate playground with the model and metaparameters pre-selected and the prompt pre-populated. Note that you need to have been granted access to a model before you can use it in a playground.
Amazon Bedrock examples demonstrate prompts and parameters for various supported models and tasks. Tasks include summarization, question answering, problem solving, code generation, text generation, and image generation. Each example shows a model, prompt, parameters, and response, and presents a button you can press to open the example in a playground. The results you get in the playground may or may not match what is shown in the example, especially if the parameters allow for lower-probability tokens.
Our first example shows arithmetic word problem solving using a chain-of-thought prompt and the Llama 2 Chat 70B v1 model. There are several points of interest in this example. First, it works with a relatively small open-source chat model. (As an aside, there’s a related example that uses a 7B (billion) parameter model instead of the 70B parameter model used here; it also works.) Second, the chain-of-thought action is triggered by a simple addition to the prompt, “Let’s think step by step.” Note that if you remove that line, the model often goes off the rails and generates a wrong answer.
Our second example shows contract entity extraction using Cohere’s Command text generation model. Text LLMs (large language models) often allow for many different text processing functions.
Our final example shows image inpainting, an application of image generation that uses a reference image, a mask, and prompts to produce a new image. Up until now, I’ve only done AI image inpainting in Adobe Photoshop, which has had the capability for awhile.
Amazon Bedrock orchestration currently includes importing data sources into knowledge bases that you can then use for setting up RAG, and creating agents that can execute actions. These are two of the most important techniques available for building generative AI applications, falling between simple prompt engineering and expensive and time-consuming continued pre-training or fine-tuning.
Using knowledge bases takes multiple steps. Start by importing your data sources into an Amazon S3 bucket. When you do that, specify the chunking you’d like for your data. The default is approximately 300 tokens per chunk, but you can set your own size. Then set up your vector store and embeddings model in the database you prefer, or allow AWS to use its default of Amazon OpenSearch Serverless. Then create your knowledge base from the Bedrock console, ingest your data sources, and test your knowledge base. Finally, you can connect your knowledge base to a model for RAG, or take the next step and connect it to an agent. There’s a good one-hour video about this by Mani Khanuja, recorded at AWS re:Invent 2023.
Agents orchestrate interactions between foundation models, data sources, software applications, and prompts, and call APIs to take actions. In addition to the components of RAG, agents can follow instructions, use an OpenAPI schema to define the APIs that the agent can invoke, and/or invoke a Lambda function.
The Assessment and Deployment panel in Amazon Bedrock contains functionality for model evaluation and provisioned throughput.
Model evaluation supports automatic evaluation of a single model, manual evaluation of up to two models using your own work team, and manual evaluation of as many models as you wish using an AWS-managed work team. Automatic evaluation uses recommended metrics, which vary depending on the type of task being evaluated, and can either use your own prompt data or built-in curated prompt data sets.
Provisioned throughput allows you to purchase dedicated capacity to deploy your models. Pricing varies depending on the model that you use and the level of commitment you choose.
It’s worth discussing ways of customizing models in general at this point. Below we’ll talk specifically about the customization methods implemented in Amazon Bedrock.
Prompt engineering, as shown above, is one of the simplest ways to customize a generative AI model. Typically, models accept two prompts, a user prompt and a system or instruction prompt, and generate an output. You normally change the user prompt all the time, and use the system prompt to define the general characteristics you want the model to take on. Prompt engineering is often sufficient to define the way you want a model to respond for a well-defined task, such as generating text in specific styles by presenting sample text or question-and-answer pairs. You can easily imagine creating a prompt for “Talk Like a Pirate Day.” Ahoy, matey.
Page 2
Retrieval-augmented generation helps to ground LLMs with specific sources, often sources that weren’t included in the models’ original training. As you might guess, RAG’s three steps are retrieval from a specified source (the knowledge base in Amazon Bedrock parlance), augmentation of the prompt with the context retrieved from the source, and then generation using the model and the augmented prompt.
RAG procedures often use embedding to limit the length and improve the relevance of the retrieved context. Essentially, an embedding function takes a word or phrase and maps it to a vector of floating point numbers; these are typically stored in a database that supports a vector search index. The retrieval step then uses a semantic similarity search, typically using the cosine of the angle between the query’s embedding and the stored vectors, to find “nearby” information to use in the augmented prompt. Search engines usually do the same thing to find their answers.
Agents, aka conversational retrieval agents, expand on the idea of conversational LLMs with some combination of tools, running code, embeddings, and vector stores. In other words, they are RAG plus additional steps. Agents often help to specialize LLMs to specific domains and to tailor the output of the LLM. Azure Copilots are usually agents; Google and Amazon use the term agents. LangChain and LangSmith simplify building RAG pipelines and agents.
Fine-tuning large language models is a supervised learning process that involves adjusting the model’s parameters to a specific task. It’s done by training the model on a smaller, task-specific data set that’s labeled with examples relevant to the target task. Fine-tuning often takes hours or days using many server-level GPUs and requires hundreds or thousands of tagged exemplars. It’s still much faster than extended pre-training.
Pre-training is the unsupervised learning process on huge text data sets that teaches LLMs the basics of language and creates a generic base model. Extended or continued pre-training adds unlabeled domain-specific or task-specific data sets to the base model to specialize the model, for example to add a language, add terms for a specialty such as medicine, or add the ability to generate code. Continued pre-training (using unsupervised learning) is often followed by fine-tuning (using supervised learning).
Both fine-tuning and continued pre-training tend to be expensive and lengthy processes. Even preparing the data for these can be a challenge. For fine-tuning, the challenge is getting the tagging done within budget. For continued pre-training, the challenge is to find a data set for your domain of interest that doesn’t introduce biases or toxicity of any kind.
To accompany Amazon Bedrock, AWS has released a mostly free low-code platform for learning generative AI and building small AI apps. The introductory PartyRock blog post is by Jeff Barr, and tells you enough that you can dive in yourself; it also supplies links to PartyRock learning resources near the end of the post. If you don’t want to build an app yourself, you can still play with the apps others have built.
Amazon Bedrock is a credible competitor to Azure AI Studio. If you’re already committed to AWS rather than Microsoft Azure or Google Cloud, then Bedrock will certainly be a good choice for building and scaling generative AI applications. Bedrock offers fewer foundation models than Azure AI Studio, and furthermore lacks access to any OpenAI models, but it should do the job for most generative AI apps. Bedrock is currently a little behind Azure AI Studio when it comes to content filters, but that could easily change in the future.
Note that the cost of deploying generative AI apps tends to dwarf the cost of developing them. The cost of using Amazon Bedrock to do prompt engineering and develop RAG apps tends to be low (ignoring the people costs), and the cost of testing these in the Bedrock playgrounds is usually negligible. The cost of fine-tuning tends to be something that might give small companies pause. The cost of continued pre-training may also give medium-size companies pause. But deploy an app with a customized model at scale sufficient to serve a large audience with low lag for a long period of time, and soon you’re talking about real money.
—
Cost: Pricing is based on the model, the volume of input tokens and output tokens, and on whether you have purchased provisioned throughput for the model. For more information, see the Model providers page in the Amazon Bedrock console.
Platform: Browser-based, hosted on AWS. API access available.
Next read this:
Posted by Richy George on 29 January, 2024
This post was originally published on this siteIn August 2023, a small group of Google development and UX leads bewailed the difficulty of setting up a development environment for multiplatform and full-stack apps, and offered their take on an experimental prototype intended to solve the issues. Difficulty setting up technology stacks for development is not a new problem. It has been an issue since at least the early 1980s, when personal computers became available.
Project IDX is a browser-based development environment built on Code OSS and powered by Codey, a generative AI foundation model trained on code and built on PaLM 2. Project IDX is designed to make it easier to build, manage, and deploy full-stack web and multiplatform applications, using popular frameworks and languages.
Code OSS is the fully open-source version of Microsoft’s Visual Studio Code. The latter has a few proprietary additions, despite being free software.
At the time of its announcement in August, Project IDX was only available through a waitlist sign-up; my application was finally approved in December. Project IDX is still very much a rough-edged preview, but has an interesting design and some utility, even if it’s not yet intended for use in a production environment.
There are several products that compete with Project IDX at some level. These include AWS Cloud9, Gitpod, Online IDE, Replit, StackBlitz, Eclipse Che, Codeanywhere, and GitHub Codespaces.
There are a number of features that make Project IDX look promising despite its rough edges and its feel of being under construction. For starters, it’s actually a familiar environment for anyone who uses Visual Studio Code. As I understand it, the portions of VS Code that aren’t included in Code OSS are the Microsoft-specific customizations, which don’t matter too much in this context.
Some of those customizations are replaced by the IDX AI powered by Codey. The IDX AI provides code suggestions as you type and offers an AI-powered code chat you can ask for help with your code, to generate new code, to translate code to another language, to explain code, and to write unit tests. Supposedly, IDX AI also highlights possible license requirements based on AI-generated code, although I haven’t seen that pop up.
The IDX Code OSS editor runs in a Google Cloud VM, called a Cloud Workstation. Normally, Cloud Workstation time is billed per hour at a rate that varies with the size of the machine type, from $0.16/hour to $9.36/hour. Project IDX is currently free.
Normally, Cloud Workstations support a variety of popular IDEs and Duet AI. Project IDX supports only Code OSS, and Codey instead of Duet. (I can’t tell you the difference between Duet AI and Codey in practice, although it might be an interesting comparison to investigate.) Cloud Workstations can normally run inside your private network and in your staging environment. Project IDX is currently restricted to its own environment.
You can create projects in Project IDX with built-in templates and GitHub imports. The templates support the JavaScript, TypeScript, and Dart languages and the Angular, React, NextJS, Vue, Svelte, and Flutter frameworks. In the future, Project IDX is due to support Python, Go, and “AI.” You can optionally use Nix to customize your workspace.
—
GitHub imports can be of three types: web, Flutter, and “other,” which currently appears to mean JavaScript/TypeScript frameworks other than those explicitly listed. The frameworks explicitly supported include Angular, React, Next.js, Vue, and Svelte.
If your GitHub project has JavaScript dependencies, you can run npm install
in your IDX terminal window after your import completes. You can also turn your project into a Git repository from within IDX and sync that with GitHub.
—
In addition to a web preview, Project IDX presents previews in Android emulators and iOS simulators, where supported by the underlying template. All three work for a Flutter app. Only two, web preview and iOS simulator, work for an Angular app, since a stock Angular app isn’t native unless you add something like Ionic or NativeScript.
You can deploy directly from your workspace to Firebase hosting. On an experimental basis, you can share your workspace with complete shared access.
Project IDX comes with pre-installed extensions for the languages and frameworks it supports. It is supposed to support additional extensions that are available from OpenVSX, although I can’t confirm whether all of those work at this point—there are just too many (over 3,000) to check.
One current major limitation of Project IDX is that only two projects are allowed at once. You can get around this by saving projects to GitHub and juggling which you have open in IDX.
Note that there are numerous bug reports beyond the list in the FAQ.
Project IDX shows a lot of promise. It’s visually similar to Visual Studio Code for the Web (which, sadly, lacks a terminal and debugger). It’s both visually and functionally similar to GitHub Codespaces and Gitpod, and it’s functionally similar to Eclipse Che.
One reason you might prefer Project IDX to any of those would be its hosting in a Google Cloud Workspace, which is a big advantage if you want to integrate with any Google Cloud services, or with other programs you have running in the Google Cloud. On the other hand, if your existing code runs on AWS, you might want to consider using AWS Cloud9.
My biggest concern about making a commitment to Project IDX would be Google’s long history of killing its projects and services. Remember Google+? Freebase? The Google Search Appliance? Polymer? Google Domains? All ex-parrots, they’ve rung down the curtain and joined the choir invisible.
Nevertheless, Project IDX has its attractions. As long as you create a GitHub repository from your workspace and keep it current, it’s certainly worth a try.
—
Cost: Free preview
Platform: Browser-based, hosted on Google Cloud
Next read this:
Copyright 2015 - InnovatePC - All Rights Reserved
Site Design By Digital web avenue