Dell Latitude E6410 Notebook| Quantity Available: 40+
This post is intended for businesses and other organizations interested... Read more →
Posted by Richy George on 5 February, 2024
This post was originally published on this siteDevelopers of a certain age are used to beginning their application development journey by choosing an operating system. Younger developers, by contrast, might start by picking a cloud. One of the most respected voices in tech suggests a different starting point, one that focuses the attention on arguably the most important component of the application stack: the database. As luminary Kelsey Hightower writes, “Early on I made the mistake of only focusing on operating systems and ignored what I now consider the most important element of computing: data.”
He’s not alone. Gatsby.js Founder Kyle Mathews has reached similar conclusions: “I’ve shifted 100% to [database]-first when prototyping.” In a world where data is the heart of the user experience, it makes sense to take a data-first approach rather than picking a language framework, for example, and taking whichever databases come with it. This approach may be easier said than done for some, however, which makes cloud API platforms like Neurelo a nice on-ramp for developers who want to put the database first but may not know how.
The big news from all the recent cloud earnings calls is AI and how it drives consumption of cloud services. (See all the mentions of AI in Microsoft’s latest earnings call.) At the heart of AI, of course, is data. Lots and lots of data. Ever since we started calling it “big data,” data has driven cloud adoption and usage.
This is true no matter what we call it or which technologies we use to store and process it. As recent O’Reilly trends show, even as technologies such as Apache Hadoop, Apache Spark, and data warehouses show declines in interest (being “legacy” technologies), interest in data just keeps booming. Interestingly, O’Reilly sees specialized databases like stand-alone vector databases as remaining relatively niche, even as more general-purpose databases such as MySQL add vector capabilities and continue to grow.
This flux in data technologies makes it even harder for developers to keep pace, constantly having to learn new technologies or new ways to use old technologies. Yet developers like Hightower suggest it’s time to make data the first choice in the technology stack, not an afterthought.
For Hightower, one way to remove the complexity from a database focus is to start simple with SQLite, rather than a more complicated database like MySQL. As he says, he’d rather “learn the fundamentals of data and how to manage it.” In other words, “I’d rather spend time learning SQL, not how to administrate a database server, which is a useful skill, but presents a huge barrier to entry.” The ease of SQLite, concurs developer Simon Willison, is that “you don’t have to run a server and you don’t need to figure out authentication.”
That’s one approach for developers new to databases, but it’s not the only one. So-called NoSQL databases can be more accessible to developers. One of the reasons developers love MongoDB is that it maps closely to the object-oriented programming that developers already know, rather than making them use ORMs (object-relational mappers) to nudge their data into a relational model. (Disclosure: I work for MongoDB.) Another option is Supabase, which provides managed PostgreSQL to enable developers to spend less time worrying about database operations.
What if you don’t want to think about the database at all, or much? Well, Neurelo might be your answer.
Neurelo offers a database abstraction platform that allows developers to work with a database without having to construct complicated SQL queries to create, retrieve, update, or delete (CRUD) records in relational databases like PostgreSQL or MySQL or to build queries using the MongoDB Query API for MongoDB. Instead, Neurelo auto-generates APIs that create both REST and GraphQL endpoints directly from the developers’ data models and schemas.
This is the heart of how Neurelo fights against the “necessary evil” of ORMs that developers have assumed they had to embrace, as Neurelo cofounder and CEO Chirag Shah says in an interview. “It’s an uphill battle” working with an ORM, he explains. “You have to go through a bunch of things, and you have to create those harnesses, and you have to maintain it, because any time your schema changes or your requirement changes you have to recalibrate the whole thing.”
It’s a pain. But there’s hope.
Traditional ORMs obscure the SQL layer, but Neurelo gives full query visibility, as the company notes on its site. Developers can inspect and improve database interactions as their comfort level with the database grows. Neurelo also helps resolve an ORM’s “N+1” problem, whereby the database makes queries in a loop, unnecessarily multiplying the number of database round trips. Neurelo combats this by using eager loading, which retrieves related data in a single query using joins. This minimizes the number of queries hitting the database and improves performance. Neurelo also goes beyond basic CRUD operations to offer advanced join read/write tasks that go across multiple entities.
In these and other ways, Neurelo allows developers—whether new to databases or experienced—to spend less time figuring out how to work with their database and more time writing their application. “You virtually get everything instantly,” Shah argues, “and you don’t have to raise a finger.” Instead of hours or weeks, “you go from zero to writing your code in minutes.”
This brings us back to Hightower’s assessment that data should be a developer’s first concern. If he’s right, tools like Neurelo can make that first concern less…concerning, without all the trade-offs that ORMs impose or the hardwiring of code that using a database driver might create. It’s a way to keep data at the heart of an application and much more approachable for developers.
Next read this:
Posted by Richy George on 31 January, 2024
This post was originally published on this siteSan Francisco-based Zilliz has released a new version of its database-as-a-service (DBaaS) offering, Zilliz Cloud. The company claims the new version offers better performance while reducing cost of ownership compared to its previous version.
Zilliz Cloud is built atop the open source Milvus vector database management system. Zilliz was founded by engineers who had helped develop the Milvus vector database.
The new version of Zilliz Cloud, according to the company, offers 10x better performance than the original Milvus vector database. This is achieved by using the Hierarchical Navigable Small World (HNSW) graph index in combination with an improved filtered search.
HNSW, however, is table stakes for most vector databases, including those of rivals Weaviate and Pinecone. It is one of the most popular graph indexes for building vector databases.
“HNSW is increasingly a must-have capability, so Zilliz would be at a disadvantage without it being supported by its DBMS,” said Doug Henschen, principal analyst at Constellation Research.
The reason behind the popularity of graph-based indexes can be attributed to their fundamental quality of being able to find the approximate nearest neighbors in high-dimensional data while being memory efficient. This quality results in an increase in performance and reduction in cost of ownership.
Another example of a graph-based index is Vamana. Other types of indexes used in vector databases include the Inverted File Index (IVF).
Additional features of the Zilliz Cloud update include the cosine similarity metric, range search, and upsert.
The cosine similarity metric is often used for text processing, where the direction of the embedding vectors is important but the distance between them is not.
A range search is used in a vector database to narrow search results based on the distance between a query vector and database vectors.
The upsert function, in a vector database, is used to either add a new vector to the index or update one if a vector with the same ID exists.
In addition to providing a unified Milvus Client that Zilliz claims will improve the developer experience, the new version of Zilliz Cloud can be integrated with data analytics, machine learning, and streaming platforms like Apache Spark, Apache Kafka, and Airbyte.
Despite the advantages of the new version, Constellation Research’s Henschen believes that many enterprises will turn to mainstream databases they already use for capabilities such as vector embeddings and vector search.
“The challenge for vendors like Zilliz is that they don’t have the transactional data of the enterprise with them typically,” said Holger Mueller, another principal analyst at Constellation Research.
“Either they have to provide the ease of use of getting transactional data in them or they need to have a solution that helps enterprises update vectors from their system of record. Failure to do so will force enterprises to look at their existing databases, such as the ones from Oracle, AWS, IBM, and Microsoft,” Mueller added.
The competition is even stiffer for Zilliz as rivals such as Pinecone also offer their products as cloud-based services, Henschen added.
However, the analyst said that dedicated AI teams and AI developers may find performance and cost advantages in using a dedicated vector database product or service, assuming it provides all of the features they need for supporting their use cases.
Next read this:
Posted by Richy George on 29 January, 2024
This post was originally published on this siteGenerative AI has had an immediate and enormous impact on software development. Software developers have embraced generative AI tools that help with coding, and they are working feverishly to build generative AI applications themselves. Databases can help—especially fast, scalable, multi-model databases like SingleStore.
At the inaugural SingleStore Now conference, SingleStore announced several AI-focused innovations with developers in mind. These include SingleStore hybrid search, compute service, Notebooks, and the Elegance SDK. Given the impact that AI and LLMs are having on developers, it makes sense to dive into the ways that these innovations make developing AI applications easier.
If you’ve been working with AI or LLMs in any way, you know that vector databases have become much more popular because of their ability to help you search for the nearest n representations of the data you’re working with. You can then use those search results to provide additional context to your LLM to make the responses more accurate. SingleStoreDB has supported vector functions and vector search for a number of years now, but generative AI applications require you to search among millions or billions of vector embeddings in milliseconds—which gets difficult using k-Nearest Neighbor (kNN) across huge data sets.
Hybrid search adds Approximate Nearest Neighbor (ANN) search as an additional option to the already existing k-Nearest Neighbor (kNN) search. The primary difference between ANN and kNN is in the name: approximate vs. nearest. Initial testing shows ANN to be orders of magnitude faster for vector search, taking your AI use cases from fast to real time. Real-time vector search ensures that your applications respond instantly to queries, even when that data has just been written to the database.
Hybrid search uses a number of techniques to make your search functions more performant, namely inverted file (IVF) with product quantization (PQ). With IVF with PQ, you can lower the build times of your index while improving the compression ratios and memory footprint of your vector searches. Beyond IVF with PQ, hybrid search adds the hierarchical navigable small world (HNSW) approach to allow for high-performance vector index searches using high dimensionality.
With hybrid search, you can combine all of these new indexing approaches, along with full-text search, to combine hybrid semantic (vector similarity) and lexical/keyword search in one query.
Below you can see an example of using hybrid search. To view the code in its broader context, check out the full notebook on SingleStore Spaces.
hyb_query = 'Articles about Aussie captures' hyb_embedding = model.encode(hyb_query) # Create the SQL statement. hyb_statement = sa.text(''' SELECT title, description, genre, DOT_PRODUCT(embedding, :embedding) AS semantic_score, MATCH(title, description) AGAINST (:query) AS keyword_score, (semantic_score + keyword_score) / 2 AS combined_score FROM news.news_articles ORDER BY combined_score DESC LIMIT 10 ''') # Execute the SQL statement. hyb_results = pd.DataFrame(conn.execute(hyb_statement, dict(embedding=hyb_embedding, query=hyb_query))) hyb_results
The above query finds the average scores of semantic and keyword searches, combines them, and sorts the news articles by this calculated score. By removing the extra complexity of performing lexical/keyword and semantic searches separately, hybrid search simplifies the code for your application.
SingleStore’s implementation of these new indexing strategies also allows us to quickly incorporate new strategies as they become available, ensuring that your application will always perform its best when backed by SingleStoreDB.
When you’re working with extremely large data sets, one of the best things you can do to keep your performance and cost in check is to perform the compute work as close to the data as possible. SingleStore compute service enables you to deploy compute resources (CPUs and GPUs) for AI, machine learning, or ETL (extract, transform, load) workloads alongside your data. With compute service, SingleStore customers can use these new compute resources to run their own machine learning models or other software in a way that allows them to have the full context of their enterprise data, without worrying about egress performance and cost.
Coupling compute service with job service (private preview), you can schedule SQL and Python jobs from within SingleStore Notebooks to process their data, train or fine-tune a machine learning model, or do other complex data transformation work. If your company often updates the fine-tuning of your AI model or LLM, you can now do so in a scheduled manner—using optimized compute platforms that live next to your data.
Many engineers and data scientists are comfortable working with Jupyter Notebooks, hosted, interactive, shareable documents in which you can write and execute code blocks, interspersed with documentation, and visualize data. What is often missing in a Jupyter environment are native connections to your databases and SQL functionality.
With the announcement of general availability of SingleStore Notebooks, SingleStore makes it easy for you to explore, visualize, and collaborate with your data and peers in real time. Getting started with SingleStore Notebooks is extremely simple:
In the navigation pane on the left, you’ll see Notebooks. Click the plus sign next to Notebooks and fill out the details. If you intend on sharing this notebook with your colleagues, ensure that you choose Shared under Location. Set the Default Cell Language to the language you will primarily use in the notebook, then click create.
Note: You can also choose one of the templates or select from the gallery, if you’d like to see how a Notebook can look.
For a handy example, I have imported a notebook from the gallery called “Getting Started with DataFrames in SingleStoreDB.” This notebook walks you through the process of using pandas
DataFrames to better take advantage of the distributed nature of SingleStoreDB.
When you select the Workspace and Database at the top of the notebook, it will update the connection_url
variable so you can quickly and easily connect to and work with your data.
In this notebook, we use a simple command, conn = ibis.singlestoredb.connect()
, to create a connection to the database. No more worrying about putting together the connection string, removing one more thing from the complex process of prototyping something using your data.
In Notebooks, you simply select the Play button next to each cell to run that code block. In the screenshot above, we’re importing packages ibis
and pandas
.
SingleStore Notebooks is an extremely powerful platform that will allow you to prototype applications, perform data analysis, and quickly repeat tasks that you may need to perform using your data living inside of SingleStoreDB. This rapid prototyping is an extremely effective way to see how you could implement AI, LLMs, or other big data methods into your business.
Be sure to check out SingleStore Spaces to see a large sample of Notebooks that showcase anything from image matching to building LLM apps that use retrieval-augmented generation (RAG) on your own data.
SingleStore Elegance is an NPM package designed to help React developers rapidly build applications on top of SingleStoreDB using SingleStore Kai or MySQL connections to the database. With the release of Elegance, there has never been a better time to develop an AI application that is backed by SingleStoreDB.
Elegance offers a powerful SDK covering a number of features:
Getting started with a demo application is as simple as following just a few simple steps:
git clone https://github.com/singlestore-labs/elegance-sdk-app-books-chat.git
npm i
sh ./scripts/start.sh
If you’d prefer to start from scratch and build something on your own, you can get started with a simple npm install @singlestore/elegance-sdk
and follow the steps from our package page on npmjs.com.
The business landscape is changing rapidly with the mainstreaming of AI and LLMs, causing nearly everyone to evaluate whether or not they should implement some form of AI. Many companies are already putting together POCs. These releases show that SingleStore is 100% focused on building a real-time analytics and AI database that gives you the tooling you need to build your applications quickly and efficiently—getting your AI and LLM projects to market faster.
That wraps up the AI innovations that emerged from SingleStore Now. In case you were unable to make the event in person, you can watch all of the sessions on demand.
Wes Kennedy is a principal evangelist at SingleStore, where he creates content, demo environments, and videos and dives into ways that we can meet customers where they are. He has a diverse background in tech covering everything from being a virtualization engineer, sales engineer, to technical marketing.
—
Generative AI Insights provides a venue for technology leaders—including vendors and other outside contributors—to explore and discuss the challenges and opportunities of generative artificial intelligence. The selection is wide-ranging, from technology deep dives to case studies to expert opinion, but also subjective, based on our judgment of which topics and treatments will best serve InfoWorld’s technically sophisticated audience. InfoWorld does not accept marketing collateral for publication and reserves the right to edit all contributed content. Contact doug_dineley@foundryco.com.
Next read this:
Posted by Richy George on 29 January, 2024
This post was originally published on this siteGenerative AI has had an immediate and enormous impact on software development. Software developers have embraced generative AI tools that help with coding, and they are working feverishly to build generative AI applications themselves. Databases can help—especially fast, scalable, multi-model databases like SingleStore.
At the inaugural SingleStore Now conference, SingleStore announced several AI-focused innovations with developers in mind. These include SingleStore Scope, Aura, Notebooks, and the Elegance SDK. Given the impact that AI and LLMs are having on developers, it makes sense to dive into the ways that these innovations make developing AI applications easier.
If you’ve been working with AI or LLMs in any way, you know that vector databases have become much more popular because of their ability to help you search for the nearest n representations of the data you’re working with. You can then use those search results to provide additional context to your LLM to make the responses more accurate. SingleStoreDB has supported vector functions and vector search for a number of years now, but generative AI applications require you to search among millions or billions of vector embeddings in milliseconds—which gets difficult using k-Nearest Neighbor (kNN) across huge data sets.
Scope adds Approximate Nearest Neighbor (ANN) search as an additional option to the already existing k-Nearest Neighbor (kNN) search. The primary difference between ANN and kNN is in the name: approximate vs. nearest. Initial testing shows ANN to be orders of magnitude faster for vector search, taking your AI use cases from fast to real time. Real-time vector search ensures that your applications respond instantly to queries, even when that data has just been written to the database.
Scope uses a number of techniques to make your search functions more performant, namely inverted file (IVF) with product quantization (PQ). With IVF with PQ, you can lower the build times of your index while improving the compression ratios and memory footprint of your vector searches. Beyond IVF with PQ, Scope adds the hierarchical navigable small world (HNSW) approach to allow for high-performance vector index searches using high dimensionality.
With Scope, you can combine all of these new indexing approaches, along with full-text search, to combine hybrid semantic (vector similarity) and lexical/keyword search in one query.
Below you can see an example of using hybrid search. To view the code in its broader context, check out the full notebook on SingleStore Spaces.
hyb_query = 'Articles about Aussie captures' hyb_embedding = model.encode(hyb_query) # Create the SQL statement. hyb_statement = sa.text(''' SELECT title, description, genre, DOT_PRODUCT(embedding, :embedding) AS semantic_score, MATCH(title, description) AGAINST (:query) AS keyword_score, (semantic_score + keyword_score) / 2 AS combined_score FROM news.news_articles ORDER BY combined_score DESC LIMIT 10 ''') # Execute the SQL statement. hyb_results = pd.DataFrame(conn.execute(hyb_statement, dict(embedding=hyb_embedding, query=hyb_query))) hyb_results
The above query finds the average scores of semantic and keyword searches, combines them, and sorts the news articles by this calculated score. By removing the extra complexity of performing lexical/keyword and semantic searches separately, hybrid search simplifies the code for your application.
SingleStore’s implementation of these new indexing strategies also allows us to quickly incorporate new strategies as they become available, ensuring that your application will always perform its best when backed by SingleStoreDB.
When you’re working with extremely large data sets, one of the best things you can do to keep your performance and cost in check is to perform the compute work as close to the data as possible. SingleStore Aura enables you to deploy compute resources (CPUs and GPUs) for AI, machine learning, or ETL (extract, transform, load) workloads alongside your data. With Aura, SingleStore customers can use these new compute resources to run their own machine learning models or other software in a way that allows them to have the full context of their enterprise data, without worrying about egress performance and cost.
Coupling Aura with Aura Job Service (private preview), you can schedule SQL and Python jobs from within SingleStore Notebooks to process their data, train or fine-tune a machine learning model, or do other complex data transformation work. If your company often updates the fine-tuning of your AI model or LLM, you can now do so in a scheduled manner—using optimized compute platforms that live next to your data.
Many engineers and data scientists are comfortable working with Jupyter Notebooks, hosted, interactive, shareable documents in which you can write and execute code blocks, interspersed with documentation, and visualize data. What is often missing in a Jupyter environment are native connections to your databases and SQL functionality.
With the announcement of general availability of SingleStore Notebooks, SingleStore makes it easy for you to explore, visualize, and collaborate with your data and peers in real time. Getting started with SingleStore Notebooks is extremely simple:
In the navigation pane on the left, you’ll see Notebooks. Click the plus sign next to Notebooks and fill out the details. If you intend on sharing this notebook with your colleagues, ensure that you choose Shared under Location. Set the Default Cell Language to the language you will primarily use in the notebook, then click create.
Note: You can also choose one of the templates or select from the gallery, if you’d like to see how a Notebook can look.
For a handy example, I have imported a notebook from the gallery called “Getting Started with DataFrames in SingleStoreDB.” This notebook walks you through the process of using pandas
DataFrames to better take advantage of the distributed nature of SingleStoreDB.
When you select the Workspace and Database at the top of the notebook, it will update the connection_url
variable so you can quickly and easily connect to and work with your data.
In this notebook, we use a simple command, conn = ibis.singlestoredb.connect()
, to create a connection to the database. No more worrying about putting together the connection string, removing one more thing from the complex process of prototyping something using your data.
In Notebooks, you simply select the Play button next to each cell to run that code block. In the screenshot above, we’re importing packages ibis
and pandas
.
SingleStore Notebooks is an extremely powerful platform that will allow you to prototype applications, perform data analysis, and quickly repeat tasks that you may need to perform using your data living inside of SingleStoreDB. This rapid prototyping is an extremely effective way to see how you could implement AI, LLMs, or other big data methods into your business.
Be sure to check out SingleStore Spaces to see a large sample of Notebooks that showcase anything from image matching to building LLM apps that use retrieval-augmented generation (RAG) on your own data.
SingleStore Elegance is an NPM package designed to help React developers rapidly build applications on top of SingleStoreDB using SingleStore Kai or MySQL connections to the database. With the release of Elegance, there has never been a better time to develop an AI application that is backed by SingleStoreDB.
Elegance offers a powerful SDK covering a number of features:
Getting started with a demo application is as simple as following just a few simple steps:
git clone https://github.com/singlestore-labs/elegance-sdk-app-books-chat.git
npm i
sh ./scripts/start.sh
If you’d prefer to start from scratch and build something on your own, you can get started with a simple npm install @singlestore/elegance-sdk
and follow the steps from our package page on npmjs.com.
The business landscape is changing rapidly with the mainstreaming of AI and LLMs, causing nearly everyone to evaluate whether or not they should implement some form of AI. Many companies are already putting together POCs. These releases show that SingleStore is 100% focused on building a real-time analytics and AI database that gives you the tooling you need to build your applications quickly and efficiently—getting your AI and LLM projects to market faster.
That wraps up the AI innovations that emerged from SingleStore Now. In case you were unable to make the event in person, you can watch all of the sessions on demand.
Wes Kennedy is a principal evangelist at SingleStore, where he creates content, demo environments, and videos and dives into ways that we can meet customers where they are. He has a diverse background in tech covering everything from being a virtualization engineer, sales engineer, to technical marketing.
—
Generative AI Insights provides a venue for technology leaders—including vendors and other outside contributors—to explore and discuss the challenges and opportunities of generative artificial intelligence. The selection is wide-ranging, from technology deep dives to case studies to expert opinion, but also subjective, based on our judgment of which topics and treatments will best serve InfoWorld’s technically sophisticated audience. InfoWorld does not accept marketing collateral for publication and reserves the right to edit all contributed content. Contact doug_dineley@foundryco.com.
Next read this:
Posted by Richy George on 29 January, 2024
This post was originally published on this siteIn August 2023, a small group of Google development and UX leads bewailed the difficulty of setting up a development environment for multiplatform and full-stack apps, and offered their take on an experimental prototype intended to solve the issues. Difficulty setting up technology stacks for development is not a new problem. It has been an issue since at least the early 1980s, when personal computers became available.
Project IDX is a browser-based development environment built on Code OSS and powered by Codey, a generative AI foundation model trained on code and built on PaLM 2. Project IDX is designed to make it easier to build, manage, and deploy full-stack web and multiplatform applications, using popular frameworks and languages.
Code OSS is the fully open-source version of Microsoft’s Visual Studio Code. The latter has a few proprietary additions, despite being free software.
At the time of its announcement in August, Project IDX was only available through a waitlist sign-up; my application was finally approved in December. Project IDX is still very much a rough-edged preview, but has an interesting design and some utility, even if it’s not yet intended for use in a production environment.
There are several products that compete with Project IDX at some level. These include AWS Cloud9, Gitpod, Online IDE, Replit, StackBlitz, Eclipse Che, Codeanywhere, and GitHub Codespaces.
There are a number of features that make Project IDX look promising despite its rough edges and its feel of being under construction. For starters, it’s actually a familiar environment for anyone who uses Visual Studio Code. As I understand it, the portions of VS Code that aren’t included in Code OSS are the Microsoft-specific customizations, which don’t matter too much in this context.
Some of those customizations are replaced by the IDX AI powered by Codey. The IDX AI provides code suggestions as you type and offers an AI-powered code chat you can ask for help with your code, to generate new code, to translate code to another language, to explain code, and to write unit tests. Supposedly, IDX AI also highlights possible license requirements based on AI-generated code, although I haven’t seen that pop up.
The IDX Code OSS editor runs in a Google Cloud VM, called a Cloud Workstation. Normally, Cloud Workstation time is billed per hour at a rate that varies with the size of the machine type, from $0.16/hour to $9.36/hour. Project IDX is currently free.
Normally, Cloud Workstations support a variety of popular IDEs and Duet AI. Project IDX supports only Code OSS, and Codey instead of Duet. (I can’t tell you the difference between Duet AI and Codey in practice, although it might be an interesting comparison to investigate.) Cloud Workstations can normally run inside your private network and in your staging environment. Project IDX is currently restricted to its own environment.
You can create projects in Project IDX with built-in templates and GitHub imports. The templates support the JavaScript, TypeScript, and Dart languages and the Angular, React, NextJS, Vue, Svelte, and Flutter frameworks. In the future, Project IDX is due to support Python, Go, and “AI.” You can optionally use Nix to customize your workspace.
—
GitHub imports can be of three types: web, Flutter, and “other,” which currently appears to mean JavaScript/TypeScript frameworks other than those explicitly listed. The frameworks explicitly supported include Angular, React, Next.js, Vue, and Svelte.
If your GitHub project has JavaScript dependencies, you can run npm install
in your IDX terminal window after your import completes. You can also turn your project into a Git repository from within IDX and sync that with GitHub.
—
In addition to a web preview, Project IDX presents previews in Android emulators and iOS simulators, where supported by the underlying template. All three work for a Flutter app. Only two, web preview and iOS simulator, work for an Angular app, since a stock Angular app isn’t native unless you add something like Ionic or NativeScript.
You can deploy directly from your workspace to Firebase hosting. On an experimental basis, you can share your workspace with complete shared access.
Project IDX comes with pre-installed extensions for the languages and frameworks it supports. It is supposed to support additional extensions that are available from OpenVSX, although I can’t confirm whether all of those work at this point—there are just too many (over 3,000) to check.
One current major limitation of Project IDX is that only two projects are allowed at once. You can get around this by saving projects to GitHub and juggling which you have open in IDX.
Note that there are numerous bug reports beyond the list in the FAQ.
Project IDX shows a lot of promise. It’s visually similar to Visual Studio Code for the Web (which, sadly, lacks a terminal and debugger). It’s both visually and functionally similar to GitHub Codespaces and Gitpod, and it’s functionally similar to Eclipse Che.
One reason you might prefer Project IDX to any of those would be its hosting in a Google Cloud Workspace, which is a big advantage if you want to integrate with any Google Cloud services, or with other programs you have running in the Google Cloud. On the other hand, if your existing code runs on AWS, you might want to consider using AWS Cloud9.
My biggest concern about making a commitment to Project IDX would be Google’s long history of killing its projects and services. Remember Google+? Freebase? The Google Search Appliance? Polymer? Google Domains? All ex-parrots, they’ve rung down the curtain and joined the choir invisible.
Nevertheless, Project IDX has its attractions. As long as you create a GitHub repository from your workspace and keep it current, it’s certainly worth a try.
—
Cost: Free preview
Platform: Browser-based, hosted on Google Cloud
Next read this:
Posted by Richy George on 22 January, 2024
This post was originally published on this siteOn November 15, Microsoft announced Azure AI Studio, a new platform for generative AI application development, using OpenAI models such as GPT-4, as well as models from Microsoft Research, Meta, Hugging Face, and others. The motivation for the product, Microsoft said, is that “navigating the complexities of prompt engineering, vector search engines, the retrieval-augmented generation (RAG) pattern, and integration with Azure OpenAI Service can be daunting.”
It turns out that Azure AI Studio is a nice system for picking generative AI models, for grounding them with RAG using vector embeddings, vector search, and data, and for fine-tuning those models, all to create AI-powered copilots, or agents. It’s the “basement-level” tool for creating copilots, aimed at experienced developers and data scientists, while Microsoft’s Copilot Studio is a “2nd-floor level” low-code tool for customizing chatbots.
Azure AI Studio has competition from the usual suspects, plus a few you might not already know about. Amazon Bedrock competes with Azure AI Studio, and Amazon Q competes with Microsoft Copilots. Bedrock offers a catalog of foundation models, RAG and embeddings, knowledge bases, fine-tuning, and continued pretraining to build generative AI applications.
There’s a somewhat competing experiment from Google, called NotebookLM, which “only” lets you provide documents (Google docs, PDFs, and pasted text) for RAG against one large language model. I put “only” in air quotes because using RAG against one good model is often enough to produce a good generative AI application. Google has a long history of killing its experiments, so I’m not taking any bets on whether or how NotebookLM will become a product.
Google does have a professional product in this space. Google Vertex AI’s Generative AI Studio allows you to tune foundation models with your own data, using tuning options such as adapter tuning and reinforcement learning from human feedback (RLHF), or style and subject tuning for image generation. That complements the Vertex AI model garden and foundation models as APIs.
If you can write a little Python, JavaScript, or Go, you can accomplish many of the same things you can with Azure AI Studio—or possibly more—with LangChain and LangSmith. You can also accomplish some of the same things with Poe, which has a good selection of models and lets you customize bots with plain-text prompts as well as with code.
Azure AI Studio hosts AI models from Microsoft Research, OpenAI, Meta, Hugging Face, and Databricks, as well as NVIDIA base models, so that you can find the current best model for your application, or at least one that works well enough. In addition, Azure AI Studio offers half a dozen Azure OpenAI language models, some of which have fine-tuning capabilities.
In general, the OpenAI models are offered “as a service,” meaning that they are deployed in a model pool with its own GPUs. When you provision them, you get an inference endpoint in your own subscription and possibly the ability to use them in fine-tuning and evaluation jobs. We’ll discuss fine-tuning when we talk about model customization below.
Not every generative AI model has the same capabilities or performance. Historically, better models have been priced higher, but recently some free open-source models have exhibited excellent performance on common tasks.
There are a number of standard benchmarks for LLMs, in particular, which are easier to measure automatically than models that generate media. As you can see in the chart below, GPT-4 32K is the current champion among installed models on Azure for most accuracy benchmarks, but bear in mind that the LLM performance picture changes on an almost daily basis.
As I write this, Google claims that its new Gemini model surpasses GPT-4. I haven’t been able to test it to know whether that’s true. Apparently, the “really good” Ultra version of Gemini won’t be available until next year. The Pro version I did test is roughly at the level of GPT-3.5.
In addition, at least three competitive small language models have been released recently. They include Starling-LM-7B, which uses reinforcement learning from AI feedback (RLAIF), from UC Berkeley.
Azure AI Studio offers models through two mechanisms: model as a service (MaaS), and model as a platform (MaaP). Model as a service means that you access the model through an API, and typically pay for usage as you go; the model itself lives in a central pool where it has access to GPUs. The Azure OpenAI models are all available as MaaS, which makes sense since they require so much GPU capacity to run. As I write this, six Meta Llama 2 models just became available as MaaS.
Model as a platform means that you deploy the model into VMs that belong to your Azure subscription. When I tried this I was deploying a Mistral 7B model to a single VM of type Standard_NC24ads_A100_v4, which has 24 vCPUs, 220.0 GiB of memory, one NVIDIA A100 PCIe GPU, and uses third-generation AMD EPYC 7V13 (Milan) processors. I wasn’t impressed by the ungrounded inference results from Mistral 7B on my custom prompts—the right answer was in there, but surrounded by irrelevant hallucinations—although I imagine I could fix that with prompt engineering and/or RAG. (See the “Model customization methods” section below.) There has been speculation that Mistral 7B was trained on benchmark test data, which could explain why it goes off the rails more than you would expect from its benchmark scores.
I’ve heard claims that the new Mixtral 8x7B eight-way mixture-of-experts model is much better, but it wasn’t available in the Azure AI Studio catalog when I was testing. GPT-4 is supposedly also an eight-way mixture-of-experts model, but it’s much bigger; OpenAI hasn’t yet confirmed how the model was built.
If your Azure account/subscription/region doesn’t have any GPU quotas, you can still deploy a generative AI model as a platform with shared GPU capacity. The trade-off for this is that shared GPU capacity is only good for a limited time, variously quoted as 24 or 168 hours. This is considered a stopgap until your cloud administrator can arrange some GPU quota for you.
Azure AI Studio can filter models by collections, the inference tasks they support, and the fine-tuning tasks they support. Currently there are eight collections, mostly representing model sources, such as Azure OpenAI, Meta, and Mistral AI. Currently there are 20 inference tasks, including text generation, question answering, embeddings, translation, and image classification. And there are 11 fine-tuning tasks, all drawn from the inference task list, but not including embeddings, which is more of an intermediate tool for implementing retrieval-augmented generation.
It’s worth discussing ways of customizing models in general at this point. In the following section, you’ll see the tools and components in Azure AI Studio.
Prompt engineering is one of the simplest ways to customize a generative AI model. Typically, models accept two prompts, a user prompt and a system prompt, and generate an output. You normally change the user prompt all the time, and use the system prompt to define the general characteristics you want the model to take on.
Prompt engineering is often sufficient to define the way you want a model to respond for a well-defined task, such as generating text in specific styles. The image below shows the Azure AI Studio sample prompt for a Shakespearean writing assistant. You can easily imagine creating a similar prompt for “Talk Like a Pirate Day.” Ahoy, matey.
LLMs often have hyperparameters that you can set as part of your prompt. Hyperparameter tuning is as much a thing for LLM prompts as it is for training machine learning models. The usual important hyperparameters for LLM prompts are temperature, context window, maximum number of tokens, and stop sequence, but can vary from model to model.
The temperature controls the randomness of the output; depending on the model it can range from 0 to 1 or 0 to 2. Higher temperature values ask for more randomness. In some models, 0 means “set the temperature automatically.” In other models, 0 means “no randomness.”
The context window controls the number of preceding tokens (words or subwords) that the model takes into account for its answer. The maximum number of tokens limits the length of the generated answer. The stop sequence is used to suppress offensive or inappropriate content in the output.
Retrieval-augmented generation, or RAG, helps to ground LLMs with specific sources, often sources that weren’t included in the models’ original training. As you might guess, RAG’s three steps are retrieval from a specified source, augmentation of the prompt with the context retrieved from the source, and then generation using the model and the augmented prompt.
RAG procedures often use embedding to limit the length and improve the relevance of the retrieved context. Essentially, an embedding function takes a word or phrase and maps it to a vector of floating point numbers. These are typically stored in a database that supports a vector search index. The retrieval step then uses a semantic similarity search, typically using the cosine of the angle between the query’s embedding and the stored vectors, to find “nearby” information to use in the augmented prompt. Search engines usually do the same thing to find their answers.
Agents, aka conversational retrieval agents, expand on the idea of conversational LLMs with some combination of tools, running code, embeddings, and vector stores. In other words, they are RAG plus additional steps. Agents often help to specialize LLMs to specific domains and to tailor the output of the LLM. Azure Copilots are usually agents; Google and Amazon use the term agents. LangChain and LangSmith simplify building RAG pipelines and agents.
Fine-tuning large language models is a supervised learning process that involves adjusting the model’s parameters to a specific task. It’s done by training the model on a smaller, task-specific data set that’s labeled with examples relevant to the target task. Fine-tuning often takes hours or days using many server-level GPUs and requires hundreds or thousands of tagged exemplars. It’s still much faster than extended pretraining.
LoRA, or low-rank adaptation, is a method that decomposes a weight matrix into two smaller weight matrices. This approximates full supervised fine-tuning in a more parameter-efficient manner. The original Microsoft LoRA paper was published in 2021. A 2023 quantized variation on LoRA, QLoRA, reduces the amount of GPU memory required for the tuning process. LoRA and QLoRA typically reduce the number of tagged exemplars and time required compared to standard fine-tuning.
Pretraining is the unsupervised learning process on huge text data sets that teaches LLMs the basics of language and creates a generic base model. Extended or continued pretraining adds unlabeled domain-specific or task-specific data sets to the base model to specialize the model, for example to add a language, add terms for a specialty such as medicine, or add the ability to generate code. Continued pretraining (using unsupervised learning) is often followed by fine-tuning (using supervised learning).
Earlier in this review, you saw the Azure AI Studio model catalog and model benchmarks. In addition to those, in its Explore tab, Azure AI Studio offers speech, vision, and language capabilities, responsible AI, and prompt samples, such as the Shakespearean writing assistant you saw in the previous section.
In its Build tab, Azure AI Studio offers the Playground, Evaluation, Prompt Flow, Custom Neural Voice, and Fine-tuning tools, and components for Data, Indexes, Deployments, and Content Filters. In the Manage tab, you can see your resources, and (at least on the staging site) your quotas for each subscription and region.
Page 2
Azure AI Studio includes Cognitive Service speech capabilities for building voice-enabled apps. Note that these are voice-specific models, not generative AI. The prebuilt voice services have links to samples you can run. The custom models have links to instructions for getting started, which may also have samples you can run.
The speech services include captioning, speech analytics, speech to text, translation with speech to text, and text to speech with pretrained and custom neural voices. The neural voices are very high quality, to the point where customers might not realize that they are AI-generated. The pretrained voice gallery currently includes 478 voices across 148 languages and variants; some of the voices can speak over 40 languages.
Azure AI Studio also includes vision services. They add the ability to read text, analyze images, and detect faces to your app using machine learning and OCR, not generative AI.
Azure AI Studio unifies three individual language services in Azure AI services—Text Analytics, QnA Maker, and Language Understanding (LUIS). I honestly don’t know whether the services use the machine-learning-based language models that Microsoft has refined over the years, or new generative AI models. In either case, these models allow you to classify and summarize documents, get real-time translations, or integrate language into your bot experiences.
The most current iteration of Azure’s responsible AI solution is the Content Safety Studio, shown in the first screenshot below. You can use it to moderate text and image content, filter generative AI for jailbreak risk, construct metaprompts for safety, detect protected material, and monitor online activity and data.
You can set the safety levels of a model with a content filter when you deploy the model, as shown in the second screenshot below.
—
There are currently 25 prompt samples displayed in the Prompts section. Several are quite interesting. I recommend that you examine the Apple Cycle Analyst prompt to see how you’d teach an LLM how to interpret images, and the Chain of Thought Reasoning sample to see how to teach an LLM to solve basic arithmetic word problems. Without Chain of Thought guidance, most LLMs fail spectacularly on that kind of problem.
I’ve included a Shakespearean sonnet about daylight savings time that GPT-3.5 Turbo 16k and I generated after a few iterations on the user prompt. It uses the same system message you saw above to define the Shakespearean style. I didn’t have to explain the sonnet form.
The Shakespearean sonnet example you just saw, and all the prompt samples I tried, open in Azure AI Studio’s Playground tool. If you prefer to work in code, you can use the link at the top right to open your project in Visaul Studio Code (Web), which is nearly identical to Visual Studio Code on the desktop. The Playground is the most useful tool in Azure AI Studio as long as you’re only doing prompt engineering and hyperparameter tuning.
You can run your language models and evaluate them against industry-standard metrics with this tool. Then you can choose the best version based on your need. The metrics used are groundedness, coherence, fluency, relevance, and GPTsimilarity. To perform an evaluation you first need to create a runtime. You might want to get here via the Playground and Prompt Flow.
Prompt Flow is the place you’d go from the Playground to enhance your model into an app with RAG, content filters, embedding, code, custom voice output, and fine-tuning. If you look at the files at the upper right of the screen, you’ll see Jinja, YAML, and text files that define the prompt, the flow of execution, and any requirements you want to add. (Jinja is an open source web template engine for the Python programming language. YAML is a data serialization language used for configuration files.)
The Prompt Flow screen in Azure AI Studio is your easy entry into heavy-duty AI app engineering. Prompt Flow is also available separately as an open-source project on GitHub, with its own SDK and Visual Studio Code extension.
Custom Neural Voice is a limited-access platform (you have to apply for permission to use it) that allows you to create a new AI voice for your application. You can design your unique voice persona and efficiently manage voice talents, data sets, models, test runs, and endpoint connections.
In the preview period, which is in effect as of this writing, you can only fine-tune Llama 2 models with this tool, and it’s only supported in projects located in the West US 3 region.
You can connect Azure AI Studio to data in Azure Blob Storage, Azure Data Lake Storage Gen 2, or Microsoft OneLake. Data can be in a single file or a folder. You can also upload data files.
You can use your own data to implement RAG (see the “Model customization methods” section above) to ground your model as long as it isn’t too long. The total data length needs to be smaller than the model’s context size, otherwise you’ll need to use an embedding and a vector search index.
In addition, you can use image files (up to 16 MB each) for GPT-4 Turbo with Vision, from the Playground. Putting the images in a Blob Storage or Data Lake folder lets you give the model a URL and avoid uploading the images individually to the Playground.
Vector indexes using embeddings and Azure AI Search (vector search) make finding relevant data more efficient, and avoid the context length problem when implementing RAG. You can connect to the data in Azure Blob Storage, Azure Data Lake Storage Gen 2, or Microsoft OneLake when you create your index, or use data you’ve already uploaded in the data section.
Azure AI Studio supports deploying large language models, flows, and web apps. You can deploy models as a service (MaaS), or models as a platform (MaaP), as discussed above.
Flows are generative AI apps consisting of a sequence of tools, including models, your own data, and possibly embeddings, vector database lookup, and custom connections. When you deploy a flow, you create an endpoint for an AI service. You can also deploy a web app that uses your AI service.
This area lets you list and manage the content filters you use to sanitize model input and output, as discussed in the “Responsible AI” section above.
This area, under the Manage tab, lists the permissions, compute instances, connections, policies, and billing for each of your AI projects.
Quotas for the different models and instance sizes available are currently viewable and manageable under the Manage tab in the staging version of the Azure AI Studio preview. I don’t see them in my production subscriptions, although they are available when selecting and deploying models.
The number of quickstarts and tutorials in the Azure AI Studio documentation will undoubtedly grow over time. At the time of writing there are four quickstarts:
And there are three tutorials:
Yes, Azure AI Studio was designed to be usable by the blind.
Azure AI Studio, while still in preview and somewhat under construction, checks most of the boxes for a generative AI application builder. It’s clearly making progress, based on my peek at a staging site for the product, and also on the new features that dropped while I was working on my review.
You can build generative AI web apps using Azure AI Studio without having to write code. If you can write Python, all the better. I like the way the Playground and the Prompt Flow tools work.
As I mentioned in the introduction, you can accomplish many of the same things using competing products from Amazon (Bedrock) and Google (Generative AI Studio). If you can program, you can also accomplish many of the same things using LangChain and LangSmith.
But Azure AI Studio would be a good choice. It should allow you to build your AI apps efficiently with minimal pain, whether or not you write code, as long as you understand the principles of prompt engineering, embedding, RAG, and prompt flows.
—
Cost: Depends on model usage and size of instances deployed
Platform: Microsoft Azure cloud
Next read this:
Posted by Richy George on 18 January, 2024
This post was originally published on this siteSystems management and security software provider Quest Software is shipping Toad Data Studio, a platform for streamlining database management in heterogeneous relational and NoSQL database environments.
Announced January 17, Toad Data Studio allows users to manage nearly any database platform in their environment including cloud and on-premises sources and relational, NoSQL, and data warehouse sources, Quest Software said. A free trial is offered.
Toad Data Studio features an advanced SQL editor, SQL and DDL generation, and the ability to edit JSON and XML fields directly within table fields or in their own separate editing window. Users can compare data results across different queries or between different environments, either on the fly or through automated workflows, and develop desktop automations for routine tasks.
Database engineers, developers, and other databases professionals can visually profile and sample datasets for patterns, duplicates, and other attributes from a single pane of glass. Other capabilities of Toad Data Studio include letting data stewards and developers compare data schema and develop sync scripts, and moving data between systems when needed, for data professionals.
Next read this:
Posted by Richy George on 17 January, 2024
This post was originally published on this siteThere might be few takers for Pinecone’s new serverless vector database, dubbed Pinecone Serverless, analysts believe.
“Why set up and administer a separate database—even one with the advantages of serverless scalability—if you can get the same functionality from the database you are already using and in which you are already managing your data?”, said Doug Henschen, principal analyst at Constellation Research.
Other than mainstream vector databases, such as Milvus, Weaviate, and Chroma, vector embedding and search features have either already been added or are coming soon to database service providers, including MongoDB, Couchbase, Snowflake, and Google BigQuery, among others.
“The addition of vector embeddings and search make it harder for fledgling, vector-only databases to develop a big market,” Henschen said.
Vector databases and vector search, according to experts, are two technologies that developers use to convert unstructured information into vectors, now more commonly called embeddings.
These embeddings, in turn, make storing, searching, and comparing the information easier, faster, and significantly more scalable for large datasets.
The scalability advantage of vector search has also helped it win favor among developers who are building applications based on generative AI as more data you can feed to a large language model (LLM), as and when required, the more accurate responses the model can generate, in turn making the top layer application more efficient.
However, the principal analyst said that he was not convinced that vector databases, such as Pinecone, with more bells and whistles eyeing developers and data scientists working on AI would force enterprises to pay for an additional database service that’s only used for development of AI-based applications.
Moreover, the launch of Pinecone Serverless comes at a time when IT budgets of enterprises continue to remain flat.
“While there is a lot of interest in generative AI, budgets are not yet spiking accordingly,” said Tony Baer, principal analyst at dbInsight.
“The flat budgets can be attributed to the immaturity of the field; choices of everything from tooling to foundation models to runtime services are just in their infancy, and aside from copilots and natural language query, enterprises are still on the learning curve for identifying winning use cases,” Baer added.
Along with feeding demand for generative AI, Pinecone expects the new serverless database to help enterprises reduce cost and the need to manage infrastructure.
The cost reduction is made possible by separating reads, writes, and storage, the company said, adding that the database aims to reduce latency by adopting an architecture, under which vector clustering sits on top of blob storage.
The database, according to the company, comes with new indexing and retrieval algorithms to enable fast and memory-efficient vector search from blob storage without sacrificing retrieval quality.
The new vector indexing, according to Baer, gives Pinecone an advantage over other vector and operational databases. Pinecone supports almost a dozen index types, the analyst said.
The serverless atrribute of the database, too, Baer says, is the need of the hour.
“The nature of retrieval augmented generation (RAG) workloads is that they will have the characteristics of any query-driven workload (think analytics), which are spikey in nature. Without serverless, customers must provision “just-in-case” capacity that is likely to often sit silent,” Baer explained.
A secondary reason for Pinecone taking the serverless route is to help ease developer complexity as it eliminates the need to provision servers.
Next read this:
Posted by Richy George on 15 January, 2024
This post was originally published on this siteAWS researchers are working on developing a large language model-based debugger for databases in an effort to help enterprises solve performance issues in such systems.
Dubbed Panda, the new debugging framework has been designed to work in a manner that is similar to a database engineer (DBE), the company wrote in a blog post, adding that troubleshooting performance issues in a database can be “notoriously hard.”
Unlike database administrators, who are tasked with managing multiple databases, database engineers are tasked with designing, developing, and maintaining databases.
Panda, effectively, is a framework that provides context grounding to pre-trained LLMs in order to generate more “useful” and “in-context” troubleshooting recommendations, the researchers explained.
The framework includes four key components, grounding, verification, affordance, and feedback.
Researchers describe verification as the ability of the model to be able to verify the generated answer using relevant sources and produce the citation along with its output so the end user can verify it.
On the other hand, affordance can be described as the ability of the framework to inform the user about the consequences of the recommended action suggested by an LLM while explicitly highlighting high-risk action, such as DROP or DELETE, the researchers said.
Panda’s feedback component, according to the researchers, allows the LLM-based debugger to accept feedback from the user and account for those when generating responses.
These four components in turn make up the debugger’s architecture, which includes the question verification agent (QVA), the grounding mechanism, the verification mechanism, the feedback mechanism, and the affordance mechanism.
While the QVA identifies and filters out the irrelevant queries, the grounding mechanism comprises a document retriever, Telemetry-2-text, and a context aggregator to provide more context to a prompt or query.
The verification mechanism comprises the answer verification and source attribution, the researchers said, adding that all these mechanisms along with the feedback and affordance mechanism work in the background of a natural language (NL) interface which the enterprise user interacts with.
Researchers working at AWS also pitched Panda against OpenAI’s GPT-4 model, which currently underlines ChatGPT.
“…prompting ChatGPT with database performance queries often results in ‘technically correct’ but highly ‘vague’ or ‘generic’ recommendations typically rendered useless and untrustworthy by experienced database engineers (DBEs),” the researchers wrote while showcasing a result while troubleshooting an Aurora PostgreSQL database.
For the experiment, AWS researchers had gathered a group of DBEs with three different competency levels and most of them sided in favor of Panda, the paper showed.
In addition, researchers claimed that Panda, although used on cloud databases in their experiment, can be extended to any database system.
Next read this:
Posted by Richy George on 15 January, 2024
This post was originally published on this siteAWS researchers are working on developing a large language model-based debugger for databases in an effort to help enterprises solve performance issues in such systems.
Dubbed Panda, the new debugging framework has been designed to work in a manner that is similar to a database engineer (DBE), the company wrote in a blog post, adding that troubleshooting performance issues in a database can be “notoriously hard.”
Unlike database administrators, who are tasked with managing multiple databases, database engineers are tasked with designing, developing, and maintaining databases.
Panda, effectively, is a framework that provides context grounding to pre-trained LLMs in order to generate more “useful” and “in-context” troubleshooting recommendations, the researchers explained.
The framework includes four key components, grounding, verification, affordance, and feedback.
Researchers describe verification as the ability of the model to be able to verify the generated answer using relevant sources and produce the citation along with its output so the end user can verify it.
On the other hand, affordance can be described as the ability of the framework to inform the user about the consequences of the recommended action suggested by an LLM while explicitly highlighting high-risk action, such as DROP or DELETE, the researchers said.
Panda’s feedback component, according to the researchers, allows the LLM-based debugger to accept feedback from the user and account for those when generating responses.
These four components in turn make up the debugger’s architecture, which includes the question verification agent (QVA), the grounding mechanism, the verification mechanism, the feedback mechanism, and the affordance mechanism.
While the QVA identifies and filters out the irrelevant queries, the grounding mechanism comprises a document retriever, Telemetry-2-text, and a context aggregator to provide more context to a prompt or query.
The verification mechanism comprises the answer verification and source attribution, the researchers said, adding that all these mechanisms along with the feedback and affordance mechanism work in the background of a natural language (NL) interface which the enterprise user interacts with.
Researchers working at AWS also pitched Panda against OpenAI’s GPT-4 model, which currently underlines ChatGPT.
“…prompting ChatGPT with database performance queries often results in ‘technically correct’ but highly ‘vague’ or ‘generic’ recommendations typically rendered useless and untrustworthy by experienced database engineers (DBEs),” the researchers wrote while showcasing a result while troubleshooting an Aurora PostgreSQL database.
For the experiment, AWS researchers had gathered a group of DBEs with three different competency levels and most of them sided in favor of Panda, the paper showed.
In addition, researchers claimed that Panda, although used on cloud databases in their experiment, can be extended to any database system.
Next read this:
Copyright 2015 - InnovatePC - All Rights Reserved
Site Design By Digital web avenue